Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Prologue

verfasst von : Letterio Gatto, Parham Salehyan

Erschienen in: Hasse-Schmidt Derivations on Grassmann Algebras

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter lays down a non-technical and expository pathway to two non-linear PDEs: the Korteweg–de Vries (KdV) equation, modelling solitary waves, and the Kadomtsev–Petviashvili (KP) equation, a generalization of the KdV originally motivated by applications to plasma physics. Although the chapter’s contents might not seem related to the rest of the book in a straightforward manner, the KdV and KP equations are, surprisingly, linked to a number of subjects that any mathematician has had early close encounters with. To name but a few, cubic plane curves, linear recurrence sequences, linear ODEs and (generalized) Wronskians associated with fundamental systems of solutions, exterior algebras of free modules, Plücker embeddings of finite-dimensional Grassmannians and Schubert calculus. In sum, these two equations provide us with an excuse to return to the early stages of our scholarly education and shed a new light on it. The chapter culminates with the appearance, as a kind of deus ex machina, of the bosonic expression of the vertex operators occurring in the so-called vertex algebra of free charged fermions. These operators act on a polynomial ring in infinitely many indeterminates and encode the full system of PDEs known under the name of KP hierarchy, which arises as compatibility conditions for another system of infinitely many PDEs (expressed in Lax form, see [101, 140] or [78, p. 73]).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Diederik J. Korteweg (Den Bosch, 1848–Amsterdam, 1941) and Gustav de Vries (Amsterdam, 1866–Harlem, 1934) were Dutch mathematicians, after whom the Institute of Mathematics of the University of Amsterdam is currently named.
 
2
Boris B. Kadomtsev (1928–1998) and Vladimir I. Petviashvili (1936–1993), Russian physicists
 
3
Józef Hoene-Wroński (Wolsztyn, 1776–Neuilly-sur-Seine, 1853). A Polish mathematician with multifaceted interests. He was also an inventor, a lawyer and an economist. See [122].
 
4
Julius Plücker (1801–1868), German mathematician and physicist. His formulas computing the geometric genus of a plane curves with singularities are particularly renowned.
 
5
After Hermann Günther Grassmann, great German mathematician born in Stettin in the year 1809, when the town was part of the Kingdom of Prussia. He died in 1877 in the same town, by which time it was part of the German Empire.
 
6
Hermann Cäsar Hannibal Schubert (Potsdam, 1848–Hamburg, 1911), the creator of the celebrated calculus which bears his name
 
7
Jules Henri Poincaré was one of the most famous French mathematicians, who left important contributions in nearly every field of mathematics, besides theoretical physics and philosophy of science. He was born in Nancy in 1854 and died in Paris in 1912.
 
8
Born in Verona in 1879, Giovanni Zeno Giambelli was an Italian mathematician, one of the most brilliant students of Corrado Segre. The formula bearing his name is extremely important in Schubert calculus and its variants (quantum, equivariant or for other homogeneous spaces). He died in Messina in 1953, probably without suspecting the future influence of his work. See [91] for more details on his biography.
 
9
Niels Henrik Abel (Finnøy, 1802–Froland, 1829) was a Norwegian mathematician. His name is linked to many different contributions, including the impossibility to solve the quintic equation by radicals. He died a couple of days before being appointed professor at the University of Berlin.
 
10
Joseph Liouville (Saint-Omer, 24 marzo 1809–Parigi, gave outstanding contributions in nearly all the branches of mathematics, from number theory (he provided a proof of the existence of transcendental numbers) to theoretical mechanics (Liouville tori)).
 
11
Karl Theodor Wilhelm Weierstrass (1815–1897), German mathematician often cited as the “father of modern analysis”. However, his contributions to mathematics are countless. For instance Weierstrass points are very important in the geometry of algebraic curves.
 
12
A discrete subgroup \(\varLambda\) of \(\mathbb{C}\) such that \(\dim _{\mathbb{R}}\varLambda \otimes _{\mathbb{Z}}\mathbb{R} = 2\).
 
13
A modular form is a complex-valued function f, defined on the complex upper half-plane \(\mathbb{H}\), such that f(gz) = (cz + d) k f(z), where for any \(g = \left (\begin{array}{*{10}c} a& b\\ c &d \end{array} \right ) \in Sl_{2}(\mathbb{Z})\) one defines \(gz:={ az+b \over cz+d}\). See on this the exciting survey [152].
 
14
Ferdinand Gotthold Max Eisenstein (Berlin, 1823–1852), German mathematician who gave outstanding contributions to number theory.
 
15
Carl Ludwig Siegel (Berlin, 1896 – Gottingen, 1981), German mathematician known for his deep contributions to analytic number theory.
 
16
After Charles Hermite (Dieuze, 1822–Paris, 1901), French mathematician well known for his studies on complex-valued quadratic forms bearing his name.
 
17
Leonhard Euler (Basel, 1707–Saint Petersburg, 1783) was a Swiss polymath mathematician; famous also for discovering the T-shirt slogan \(e^{\pi \sqrt{-1}} + 1 = 0\).
 
18
A function that is constant along the integral curves of a vector field.
 
19
More precisely it is the total energy divided by the mass of the point P and by the length of the supposedly massless string.
 
20
August Ferdinand Möbius (Bad Kösen, 1790–Leipzig, 1868), German mathematician and astronomer, well known to the general public for an important non-orientable surface (the Möbius strip)
 
21
Marius Sophus Lie (Nordfjordeid, 1842–Oslo, 1899), the Norwegian mathematician who introduced the notion of the homonymous algebra, which is still one of the building blocks of modern mathematics
 
22
Pierre Alphonse Laurent (Paris, 1813–1854), French mathematician. His paper on the generalization of Taylor series was published posthumously.
 
23
The definition we adopt of \(\Gamma ^{{\ast}}(z)\) is 1∕z times the one used, for instance, in [78].
 
24
Werner Karl Heisenberg (Würzburg, 1901–Munich, Bavaria, 1976), German theoretical physicist and one of the pioneers of quantum mechanics, known for his celebrated indeterminacy principle
 
Literatur
5.
Zurück zum Zitat E. Arbarello, Sketches of KdV, in Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000). Contemporary Mathematics, vol. 312 (American Mathematical Society, Providence, 2002), pp. 9–69 E. Arbarello, Sketches of KdV, in Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000). Contemporary Mathematics, vol. 312 (American Mathematical Society, Providence, 2002), pp. 9–69
10.
Zurück zum Zitat R.E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109, 405–444 (1992) R.E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109, 405–444 (1992)
18.
Zurück zum Zitat E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Operators approach to the Kadomtsev-Petviashvili equation, Transformation groups for soliton equations III. J. Phys. Soc. Jpn. 50, 3806–3812 (1981) E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Operators approach to the Kadomtsev-Petviashvili equation, Transformation groups for soliton equations III. J. Phys. Soc. Jpn. 50, 3806–3812 (1981)
19.
Zurück zum Zitat E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations. VI. KP hierarchies of orthogonal and symplectic type. J. Phys. Soc. Jpn. 50, 3813–3818 (1981) E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation groups for soliton equations. VI. KP hierarchies of orthogonal and symplectic type. J. Phys. Soc. Jpn. 50, 3813–3818 (1981)
29.
Zurück zum Zitat E. Frenkel, Vertex algebras and algebraic curves. Séminaire Bourbaki, vol. 1999/2000, Astérisque No. 276, 299–339 (2002) E. Frenkel, Vertex algebras and algebraic curves. Séminaire Bourbaki, vol. 1999/2000, Astérisque No. 276, 299–339 (2002)
30.
Zurück zum Zitat I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster. Pure and Applied Mathematics, vol. 134 (Academic, Boston, 1988) I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster. Pure and Applied Mathematics, vol. 134 (Academic, Boston, 1988)
32.
Zurück zum Zitat E. Frenkel, D.B. Zvi, Vertex Algebra and Algebraic Curves. Mathematical Survey and Monographs, vol. 88, 2nd edn. (American Mathematical Society, Providence, 2004) E. Frenkel, D.B. Zvi, Vertex Algebra and Algebraic Curves. Mathematical Survey and Monographs, vol. 88, 2nd edn. (American Mathematical Society, Providence, 2004)
53.
Zurück zum Zitat F. Gesztesy, R. Weikard, Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies – an analytic approach. Bull. AMS 35 (4), 271–317 (1998) F. Gesztesy, R. Weikard, Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies – an analytic approach. Bull. AMS 35 (4), 271–317 (1998)
62.
Zurück zum Zitat R. Hirota, Exact solutions of the Korteveg de Vries equation for multiple collision of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971) R. Hirota, Exact solutions of the Korteveg de Vries equation for multiple collision of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)
63.
Zurück zum Zitat R. Hirota, Direct methods of finding exact solutions of nonlinear evolution equations, in Bäcklund Transformations, Inverse Scattering Methods, Solitons and Their Applications. Lecture Notes in Mathematics, vol. 515 ( Springer, New York, 1976), pp. 40–68 R. Hirota, Direct methods of finding exact solutions of nonlinear evolution equations, in Bäcklund Transformations, Inverse Scattering Methods, Solitons and Their Applications. Lecture Notes in Mathematics, vol. 515 ( Springer, New York, 1976), pp. 40–68
73.
Zurück zum Zitat V.G. Kac, Vertex Algebras for Beginners. University Lecture Series, vol. 10 (American Mathematical Society, Providence, 1996) V.G. Kac, Vertex Algebras for Beginners. University Lecture Series, vol. 10 (American Mathematical Society, Providence, 1996)
74.
Zurück zum Zitat V.G. Kac, Vertex Algebras. Course Lecture Notes (MIT, Spring, 2003) V.G. Kac, Vertex Algebras. Course Lecture Notes (MIT, Spring, 2003)
75.
Zurück zum Zitat V.G. Kac, D.A. Kazhdan, J. Lepowsky, R.L. Wilson, Realization of the basic representations of the euclidean lie algebras. Adv. Math. 42, 83–112 (1981) V.G. Kac, D.A. Kazhdan, J. Lepowsky, R.L. Wilson, Realization of the basic representations of the euclidean lie algebras. Adv. Math. 42, 83–112 (1981)
76.
Zurück zum Zitat V.G. Kac, D. Peterson, Lectures on the infinite wedge representation and the MKP hierarchy. Seminaire de Math. Superieures. Les Presses de L’Universite de Montreal 102, 141–186 (1986) V.G. Kac, D. Peterson, Lectures on the infinite wedge representation and the MKP hierarchy. Seminaire de Math. Superieures. Les Presses de L’Universite de Montreal 102, 141–186 (1986)
78.
Zurück zum Zitat V.G. Kac, A.K. Raina, N. Rozhkovskaya, Highest Weight Representations of Infinite Dimensional Lie Algebras. Advanced Series in Mathematical Physics, vol. 29, 2nd edn. (World Scientific, Singapore, 2013) V.G. Kac, A.K. Raina, N. Rozhkovskaya, Highest Weight Representations of Infinite Dimensional Lie Algebras. Advanced Series in Mathematical Physics, vol. 29, 2nd edn. (World Scientific, Singapore, 2013)
79.
Zurück zum Zitat V.G. Kac, M. Wakimoto, Exceptional hierarchies of soliton equations, in Theta Functions, Bowdoin 1987, ed. by L. Ehrenpreis, R.C. Gunning. Proceedings of Symposia in Pure Mathematics, vol. 49, Part 1, AMS, Providence, Rhode Island (1989), pp. 191–238 V.G. Kac, M. Wakimoto, Exceptional hierarchies of soliton equations, in Theta Functions, Bowdoin 1987, ed. by L. Ehrenpreis, R.C. Gunning. Proceedings of Symposia in Pure Mathematics, vol. 49, Part 1, AMS, Providence, Rhode Island (1989), pp. 191–238
80.
Zurück zum Zitat B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970) B.B. Kadomtsev, V.I. Petviashvili, On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)
81.
Zurück zum Zitat A. Kasman, Glimpses on solitons. J. Am. Math. Soc. 20 (4), 1079–1089 (2007) A. Kasman, Glimpses on solitons. J. Am. Math. Soc. 20 (4), 1079–1089 (2007)
82.
Zurück zum Zitat A. Kasman, Glimpses on Soliton Theory (The Algebra and Geometry of Nonlinear PDEs). SML, vol. 54 (American Mathematical Society, Providence, 2010) A. Kasman, Glimpses on Soliton Theory (The Algebra and Geometry of Nonlinear PDEs). SML, vol. 54 (American Mathematical Society, Providence, 2010)
88.
Zurück zum Zitat M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147 (1), 1–23 (1992) M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147 (1), 1–23 (1992)
89.
Zurück zum Zitat D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 5 39, 422–443 (1985) D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 5 39, 422–443 (1985)
90.
Zurück zum Zitat I.M. Krichever, Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11 (1), 12–26 (1977) I.M. Krichever, Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11 (1), 12–26 (1977)
91.
Zurück zum Zitat D. Laksov, Remarks on Giovanni Zeno Giambelli’s work and life. Algebra and geometry (1860–1940): the Italian contribution (Cortona, 1992). Rend. Circ. Mat. Palermo 36 (Suppl. (2)), 207–218 (1994) D. Laksov, Remarks on Giovanni Zeno Giambelli’s work and life. Algebra and geometry (1860–1940): the Italian contribution (Cortona, 1992). Rend. Circ. Mat. Palermo 36 (Suppl. (2)), 207–218 (1994)
101.
Zurück zum Zitat P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968) P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)
103.
Zurück zum Zitat J. Lepowsky, H. Li, Introduction to Vertex Operator Algebras and Their Representations. Progress in Mathematics, vol. 227 (Birkhäuser, Boston, 2004) J. Lepowsky, H. Li, Introduction to Vertex Operator Algebras and Their Representations. Progress in Mathematics, vol. 227 (Birkhäuser, Boston, 2004)
104.
Zurück zum Zitat J. Lepowsky, R.L. Wilson, Construction of the affine Lie algebra A 1 (1). Commun. Math. Phys. 62, 43–53 (1978) J. Lepowsky, R.L. Wilson, Construction of the affine Lie algebra A 1 (1). Commun. Math. Phys. 62, 43–53 (1978)
109.
Zurück zum Zitat I.G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979) I.G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979)
117.
Zurück zum Zitat M. Mulase, Algebraic theory of the KP equations, in Perspectives in Mathematical Physics. Lecture Notes Mathematical Physics, vol. III (Cambridge University Press, Cambridge, 1994), pp. 151–217 M. Mulase, Algebraic theory of the KP equations, in Perspectives in Mathematical Physics. Lecture Notes Mathematical Physics, vol. III (Cambridge University Press, Cambridge, 1994), pp. 151–217
122.
Zurück zum Zitat P. Pragacz, La vita e l’opera di Józef Maria Hoene-Wroński. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. (Italian) 89 (1), C1C8901001, 19 pp. (2011) P. Pragacz, La vita e l’opera di Józef Maria Hoene-Wroński. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. (Italian) 89 (1), C1C8901001, 19 pp. (2011)
123.
Zurück zum Zitat A. Pressley, G. Segal, Loop groups. Oxford Mathematical Monographs, Oxford Science Publications (The Clarendon Press/Oxford University Press, New York, 1986) A. Pressley, G. Segal, Loop groups. Oxford Mathematical Monographs, Oxford Science Publications (The Clarendon Press/Oxford University Press, New York, 1986)
124.
Zurück zum Zitat E. Previato, Seventy years of spectral curves: 1923–1993, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Lecture Notes in Mathematics, vol. 1620 (Springer, New York, 1996), pp. 419–481 E. Previato, Seventy years of spectral curves: 1923–1993, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Lecture Notes in Mathematics, vol. 1620 (Springer, New York, 1996), pp. 419–481
131.
Zurück zum Zitat J.S. Russel, Report on waves. Report of the fourteenth meeting of the British Association for the Advancement of Science, New York, September 1844 (London, 1845), pp. 311–390 J.S. Russel, Report on waves. Report of the fourteenth meeting of the British Association for the Advancement of Science, New York, September 1844 (London, 1845), pp. 311–390
133.
Zurück zum Zitat M. Sato, Soliton equations as dynamical systems on infinite dimensional grassmann manifolds. RIMS Kokioroku 439, 30–46 (1981) M. Sato, Soliton equations as dynamical systems on infinite dimensional grassmann manifolds. RIMS Kokioroku 439, 30–46 (1981)
140.
Zurück zum Zitat G. Segal, G. Wilson, Loop groups and equations of KdV type. Inst. Hautes Stud. Sci. Publ. Math. 61, 5–65 (1985) G. Segal, G. Wilson, Loop groups and equations of KdV type. Inst. Hautes Stud. Sci. Publ. Math. 61, 5–65 (1985)
141.
Zurück zum Zitat J.H. Silverman, The Arithmetic of Elliptic Curves. GTM, vol. 106 (Springer, New York, 1986) J.H. Silverman, The Arithmetic of Elliptic Curves. GTM, vol. 106 (Springer, New York, 1986)
150.
Zurück zum Zitat E. Witten, Two-dimensional gravity and intersection theory on moduli space, in Surveys in Differential Geometry (Cambridge, MA, 1990) (Lehigh Univ., Bethlehem, 1991), pp. 243–310 E. Witten, Two-dimensional gravity and intersection theory on moduli space, in Surveys in Differential Geometry (Cambridge, MA, 1990) (Lehigh Univ., Bethlehem, 1991), pp. 243–310
152.
Zurück zum Zitat D. Zagier, Introduction to modular forms, in From Number Theory to Physics, ed. by M. Waldschmidt, P. Moussa, J.-M. Luck, C. Itzykson (Springer, New York, 1995), pp. 238–291 D. Zagier, Introduction to modular forms, in From Number Theory to Physics, ed. by M. Waldschmidt, P. Moussa, J.-M. Luck, C. Itzykson (Springer, New York, 1995), pp. 238–291
Metadaten
Titel
Prologue
verfasst von
Letterio Gatto
Parham Salehyan
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31842-4_1