Skip to main content

2013 | OriginalPaper | Buchkapitel

24. Promises and Challenges of Unconventional Electrocatalyst Supports

verfasst von : Sujan Shrestha, William E. Mustain

Erschienen in: Electrocatalysis in Fuel Cells

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the most significant roadblocks in the commercialization and widespread implementation of proton exchange membrane fuel cells is the identification of low-cost, high-stability, high-activity electrocatalysts. An overwhelming amount of the work that has been done in this area has targeted the electrochemically active material, which has been the focus of much of this book. However, a key component to any catalyst is its support. Interaction between the catalyst and support dictates some of the most critical parameters for fuel cell performance including catalyst dispersion, particle size, faceting, and stability. Some supports, like graphitic carbon, interact very weakly with Pt and have a limited influence on catalyst activity and stability. On the other hand, recent work by several groups has shown that a strongly interacting support can drastically impact both catalyst activity and stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt Oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35 Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt Oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35
2.
Zurück zum Zitat Sheng W, Chen S, Vescovo E, Shao-Horn Y (2012) Size influence on the oxygen reduction reaction activity and instability of supported nanoparticles. J Electrochem Soc 159(2):B96–B103CrossRef Sheng W, Chen S, Vescovo E, Shao-Horn Y (2012) Size influence on the oxygen reduction reaction activity and instability of supported nanoparticles. J Electrochem Soc 159(2):B96–B103CrossRef
3.
Zurück zum Zitat Perez-Alonzo FJ, McCarthy DN, Nierhoff A, Hernandez-Fernandez P, Strebel C, Stephens IEL, Hielsen JH, Charkendorff I (2012) The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew Chem Int Ed 51(16):1–4 Perez-Alonzo FJ, McCarthy DN, Nierhoff A, Hernandez-Fernandez P, Strebel C, Stephens IEL, Hielsen JH, Charkendorff I (2012) The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew Chem Int Ed 51(16):1–4
4.
5.
Zurück zum Zitat Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) A review of heat-treatment effects on stability of PEM fuel cell catalysts for oxygen reduction reaction. J Power Sourc 173(2):891–908CrossRef Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) A review of heat-treatment effects on stability of PEM fuel cell catalysts for oxygen reduction reaction. J Power Sourc 173(2):891–908CrossRef
6.
Zurück zum Zitat Hernández-Fernández P, Montiel M, Ocón P, de la Fuente JLG, García-Rodríguez S, Rojas S, Fierro JLG (2010) Functionalization of multi-walled carbon nanotubes and application as a support for electrocatalysts in proton-exchange membrane fuel cell. Appl Catal B 99(1–2):343–352 Hernández-Fernández P, Montiel M, Ocón P, de la Fuente JLG, García-Rodríguez S, Rojas S, Fierro JLG (2010) Functionalization of multi-walled carbon nanotubes and application as a support for electrocatalysts in proton-exchange membrane fuel cell. Appl Catal B 99(1–2):343–352
7.
Zurück zum Zitat Antolini E, Salgado JRC, Gonzalez ER (2006) The stability of Pt-M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells. J Power Sourc 160(2):957–968CrossRef Antolini E, Salgado JRC, Gonzalez ER (2006) The stability of Pt-M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells. J Power Sourc 160(2):957–968CrossRef
8.
Zurück zum Zitat Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3–4):285–305CrossRef Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3–4):285–305CrossRef
9.
Zurück zum Zitat Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S (1993) Surface area loss of supported platinum in polymer electrolyte fuel cells. J Electrochem Soc 140(10):2872–2877CrossRef Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S (1993) Surface area loss of supported platinum in polymer electrolyte fuel cells. J Electrochem Soc 140(10):2872–2877CrossRef
10.
Zurück zum Zitat Tada T (2003) High dispersion catalysts including novel carbon supports. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 3. Wiley, New York Tada T (2003) High dispersion catalysts including novel carbon supports. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 3. Wiley, New York
11.
Zurück zum Zitat Eberl DD, Drits VA, Srodon J (1998) Deducing growth mechanisms for minerals from the shapes of crystal size distributions. Am J Sci 298(6):499–533CrossRef Eberl DD, Drits VA, Srodon J (1998) Deducing growth mechanisms for minerals from the shapes of crystal size distributions. Am J Sci 298(6):499–533CrossRef
12.
Zurück zum Zitat Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J Electrochem Soc 152(11):A2256–A2271CrossRef Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J Electrochem Soc 152(11):A2256–A2271CrossRef
13.
Zurück zum Zitat Mayrhofer KJJ, Meier JC, Ashton SJ, Wiberg GKH, Kraus F, Hanzlikn M, Arenz M (2008) Fuel cell catalyst degradation on the nanoscale. Electrochem Commun 10(8):1144–1147CrossRef Mayrhofer KJJ, Meier JC, Ashton SJ, Wiberg GKH, Kraus F, Hanzlikn M, Arenz M (2008) Fuel cell catalyst degradation on the nanoscale. Electrochem Commun 10(8):1144–1147CrossRef
14.
Zurück zum Zitat Mayrhofer KJJ, Ashton SJ, Meier JC, Wiberg GKH, Hanzlik M, Arenz M (2008) Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J Power Sourc 185(2):734–739CrossRef Mayrhofer KJJ, Ashton SJ, Meier JC, Wiberg GKH, Hanzlik M, Arenz M (2008) Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J Power Sourc 185(2):734–739CrossRef
15.
Zurück zum Zitat Borup R et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951CrossRef Borup R et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951CrossRef
16.
Zurück zum Zitat Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150(11):A1523–A1527CrossRef Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150(11):A1523–A1527CrossRef
17.
Zurück zum Zitat Darling RM, Meyers JP (2005) Mathematical model of platinum movement in PEM fuel cells. J Electrochem Soc 152(1):A242–A247CrossRef Darling RM, Meyers JP (2005) Mathematical model of platinum movement in PEM fuel cells. J Electrochem Soc 152(1):A242–A247CrossRef
18.
Zurück zum Zitat Tang H, Qi Z, Ramani M, Elter JF (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J Power Sourc 158(2):1306–1312CrossRef Tang H, Qi Z, Ramani M, Elter JF (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J Power Sourc 158(2):1306–1312CrossRef
19.
Zurück zum Zitat Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C (2008) Carbon support oxidation in PEM fuel cell cathodes. J Power Sourc 176(2):444–451CrossRef Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C (2008) Carbon support oxidation in PEM fuel cell cathodes. J Power Sourc 176(2):444–451CrossRef
20.
Zurück zum Zitat Passalacqua E, Antonucci PL, Vivaldi M, Patti A, Antonucci V, Giordano N, Kinoshita K (1992) The influence of Pt pn the electroxidation behaviour of carbon in phosphoric acid. Electrochim Acta 37(15):2725–2730CrossRef Passalacqua E, Antonucci PL, Vivaldi M, Patti A, Antonucci V, Giordano N, Kinoshita K (1992) The influence of Pt pn the electroxidation behaviour of carbon in phosphoric acid. Electrochim Acta 37(15):2725–2730CrossRef
21.
Zurück zum Zitat Kinoshita K (1988) Carbon: electrochemical and physicochemical properties. Wiley, New York Kinoshita K (1988) Carbon: electrochemical and physicochemical properties. Wiley, New York
22.
Zurück zum Zitat Myers JP, Darling RM (2006) Model of carbon corrosion in PEM fuel cells. J Electrochem Soc 153(8):A1432–A1442CrossRef Myers JP, Darling RM (2006) Model of carbon corrosion in PEM fuel cells. J Electrochem Soc 153(8):A1432–A1442CrossRef
23.
Zurück zum Zitat Rodríguez-Reinoso F, Sepúlveda-Escribano A (2009) Carbon as catalyst support. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, New Jersey Rodríguez-Reinoso F, Sepúlveda-Escribano A (2009) Carbon as catalyst support. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, New Jersey
24.
Zurück zum Zitat Costamanga P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. J Power Sourc 102(1–2):242–252CrossRef Costamanga P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. J Power Sourc 102(1–2):242–252CrossRef
25.
Zurück zum Zitat Esmaeilifar A, Rowshanzamir S, Eikani MH, Ghanzanfari E (2010) Synthesis methods of low Pt-loading electrocatalysts for proton exchange membrane fuel cell systems. Energy 35(9):3941–3957CrossRef Esmaeilifar A, Rowshanzamir S, Eikani MH, Ghanzanfari E (2010) Synthesis methods of low Pt-loading electrocatalysts for proton exchange membrane fuel cell systems. Energy 35(9):3941–3957CrossRef
26.
Zurück zum Zitat Wee JH, Lee KY, Kim SH (2007) Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. J Power Sourc 165(2):667–677CrossRef Wee JH, Lee KY, Kim SH (2007) Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. J Power Sourc 165(2):667–677CrossRef
27.
Zurück zum Zitat Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157CrossRef Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4157CrossRef
28.
Zurück zum Zitat Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36(3):159–175CrossRef Rodríguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36(3):159–175CrossRef
29.
Zurück zum Zitat Bandosz TJ (2009) Surface chemistry of carbon materials. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, New Jersey Bandosz TJ (2009) Surface chemistry of carbon materials. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, New Jersey
30.
Zurück zum Zitat Yoshitake T, Shimakawa Y, Kuroshima S, Kimura H, Ichihashi T, Kubo Y, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Phys B 323(1–4):124–126CrossRef Yoshitake T, Shimakawa Y, Kuroshima S, Kimura H, Ichihashi T, Kubo Y, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Phys B 323(1–4):124–126CrossRef
31.
Zurück zum Zitat Brunelle JP (1978) Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure Appl Chem 50:1211–1229CrossRef Brunelle JP (1978) Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure Appl Chem 50:1211–1229CrossRef
32.
Zurück zum Zitat Bitter JP, De Jong KP (2009) Preparation of carbon-supported metal catalysts. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, New Jersey Bitter JP, De Jong KP (2009) Preparation of carbon-supported metal catalysts. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, New Jersey
33.
Zurück zum Zitat Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J Power Sourc 172(1):133–144MathSciNetCrossRef Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J Power Sourc 172(1):133–144MathSciNetCrossRef
34.
Zurück zum Zitat Coloma F, Sepúlveda-Escribano A, Fierro JLG, Rodríguez-Reinoso F (1994) Preparation of platinum supported on pregraphitized carbon blacks. Langmuir 10(3):750–755CrossRef Coloma F, Sepúlveda-Escribano A, Fierro JLG, Rodríguez-Reinoso F (1994) Preparation of platinum supported on pregraphitized carbon blacks. Langmuir 10(3):750–755CrossRef
35.
Zurück zum Zitat Peigney A, Laurent C, Flahaut E, Bacsa R, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514CrossRef Peigney A, Laurent C, Flahaut E, Bacsa R, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514CrossRef
36.
Zurück zum Zitat Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route towards applications. Science 297(5582):787–792CrossRef Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route towards applications. Science 297(5582):787–792CrossRef
37.
Zurück zum Zitat Baxendale M (2003) The physics and applications of carbon nanotubes. J Mater Sci Mater Electron 14(10–12):657–659CrossRef Baxendale M (2003) The physics and applications of carbon nanotubes. J Mater Sci Mater Electron 14(10–12):657–659CrossRef
38.
Zurück zum Zitat Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 17(26):2679–2694CrossRef Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 17(26):2679–2694CrossRef
39.
Zurück zum Zitat Saha MS, Kundu A (2010) Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode. J Power Sourc 195(19):6255–6261CrossRef Saha MS, Kundu A (2010) Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode. J Power Sourc 195(19):6255–6261CrossRef
40.
Zurück zum Zitat Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36(5):507–522CrossRef Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36(5):507–522CrossRef
41.
Zurück zum Zitat Choi HC, Shim M, Bangsaruntip S, Dai H (2002) Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J Am Chem Soc 124(31):9058–9059CrossRef Choi HC, Shim M, Bangsaruntip S, Dai H (2002) Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J Am Chem Soc 124(31):9058–9059CrossRef
42.
Zurück zum Zitat Sheng W, Lee SW, Crumlin EJ, Chen S, Shao-Horn Y (2011) Synthesis, activity, and durability of Pt nanoparticles supported on multi-walled carbon nanotubes for oxygen reduction. J Electrochem Soc 158(11):B1398–B1404CrossRef Sheng W, Lee SW, Crumlin EJ, Chen S, Shao-Horn Y (2011) Synthesis, activity, and durability of Pt nanoparticles supported on multi-walled carbon nanotubes for oxygen reduction. J Electrochem Soc 158(11):B1398–B1404CrossRef
43.
Zurück zum Zitat Wang J, Yin G, Shao Y, Wang Z, Gao Y (2008) Electrochemical durability investigation of single-walled and multi-walled carbon nanotubes under potentiostatic conditions. J Power Sourc 176(1):128–131CrossRef Wang J, Yin G, Shao Y, Wang Z, Gao Y (2008) Electrochemical durability investigation of single-walled and multi-walled carbon nanotubes under potentiostatic conditions. J Power Sourc 176(1):128–131CrossRef
44.
Zurück zum Zitat Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRef Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRef
45.
Zurück zum Zitat Castro EV, Novoselov KS, Morozov SV, Peres NMR, Lopes dos Santos JMB, Nilsson J, Guinea F, Castro Neto AH (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 99(21):216802CrossRef Castro EV, Novoselov KS, Morozov SV, Peres NMR, Lopes dos Santos JMB, Nilsson J, Guinea F, Castro Neto AH (2007) Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys Rev Lett 99(21):216802CrossRef
46.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRef
47.
Zurück zum Zitat Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534CrossRef Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534CrossRef
48.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224CrossRef
49.
Zurück zum Zitat Kou R, Shao Y, Wang D, Engelhard MH, Kwak JH, Wang J, Viswanathan VV, Wang C, Lin Y, Wang Y, Aksay IA, Liu J (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11(5):954–957CrossRef Kou R, Shao Y, Wang D, Engelhard MH, Kwak JH, Wang J, Viswanathan VV, Wang C, Lin Y, Wang Y, Aksay IA, Liu J (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11(5):954–957CrossRef
50.
Zurück zum Zitat Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A 253(2):337–358CrossRef Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A 253(2):337–358CrossRef
51.
Zurück zum Zitat De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and application. Catal Rev Sci Eng 42(4):481–510CrossRef De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and application. Catal Rev Sci Eng 42(4):481–510CrossRef
52.
Zurück zum Zitat Rodriguez NM (1993) A review of catalytically grown carbon nanofibers. J Mater Res 8(12):3233–3250CrossRef Rodriguez NM (1993) A review of catalytically grown carbon nanofibers. J Mater Res 8(12):3233–3250CrossRef
53.
Zurück zum Zitat Biddinger EJ, Ozkan US (2010) Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction. J Phys Chem C 114(36):15306–15314CrossRef Biddinger EJ, Ozkan US (2010) Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction. J Phys Chem C 114(36):15306–15314CrossRef
54.
Zurück zum Zitat Zheng JS, Zhang XS, Li P, Zhou XG, Yuan WK (2008) Microstructure effect of carbon nanofiber on electrocatalytic oxygen reduction reaction. Catal Today 131(1–4):270–277CrossRef Zheng JS, Zhang XS, Li P, Zhou XG, Yuan WK (2008) Microstructure effect of carbon nanofiber on electrocatalytic oxygen reduction reaction. Catal Today 131(1–4):270–277CrossRef
55.
Zurück zum Zitat Zheng JS, Zhang XS, Li P, Zhu J, Zhou XG, Yuan WK (2007) Effect of carbon nanofiber microstructure on oxygen reduction activity of supported palladium electrocatalyst. Electrochem Commun 9(5):895–900CrossRef Zheng JS, Zhang XS, Li P, Zhu J, Zhou XG, Yuan WK (2007) Effect of carbon nanofiber microstructure on oxygen reduction activity of supported palladium electrocatalyst. Electrochem Commun 9(5):895–900CrossRef
56.
Zurück zum Zitat Ngo Q, Cassell AM, Austin AJ, Li J, Krishnan S, Meyyappan M, Yang CY (2006) Characteristics of aligned carbon nanofibers for interconnect via applications. IEEE Electron Device Lett 27(4):221–224CrossRef Ngo Q, Cassell AM, Austin AJ, Li J, Krishnan S, Meyyappan M, Yang CY (2006) Characteristics of aligned carbon nanofibers for interconnect via applications. IEEE Electron Device Lett 27(4):221–224CrossRef
57.
Zurück zum Zitat Ngo Q, Yamada T, Suzuki M, Ominami Y, Cassell AM, Li J, Meyyappan M, Yang CY (2007) Structural and electrical characterization of carbon nanofibers for interconnect via applications. IEEE Trans Nanotechnol 6(6):688–695CrossRef Ngo Q, Yamada T, Suzuki M, Ominami Y, Cassell AM, Li J, Meyyappan M, Yang CY (2007) Structural and electrical characterization of carbon nanofibers for interconnect via applications. IEEE Trans Nanotechnol 6(6):688–695CrossRef
58.
Zurück zum Zitat Yoon SH, Lim S, Hong SH, Qiao W, Whitehurst DD, Mochida I, An B, Yokogawa K (2004) Carbon nano-rod as a structural unit of carbon nanofibers. Carbon 42(15):3087–3095CrossRef Yoon SH, Lim S, Hong SH, Qiao W, Whitehurst DD, Mochida I, An B, Yokogawa K (2004) Carbon nano-rod as a structural unit of carbon nanofibers. Carbon 42(15):3087–3095CrossRef
59.
Zurück zum Zitat Yoon SH, Lim S, Hong SH, Qiao W, Whitehurst DD, Mochida I, An B, Yokogawa K (2005) A conceptual model for the structure of catalytically grown carbon nano-fibers. Carbon 43(9):1828–1838CrossRef Yoon SH, Lim S, Hong SH, Qiao W, Whitehurst DD, Mochida I, An B, Yokogawa K (2005) A conceptual model for the structure of catalytically grown carbon nano-fibers. Carbon 43(9):1828–1838CrossRef
60.
Zurück zum Zitat Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15(2):101–114CrossRef Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15(2):101–114CrossRef
61.
Zurück zum Zitat Moreno-Castilla C, Maldonado-Hódar FJ (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465CrossRef Moreno-Castilla C, Maldonado-Hódar FJ (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465CrossRef
62.
Zurück zum Zitat Gavalda S, Kaneko K, Thomson KT, Gubbins KE (2001) Molecular modeling of carbon aerogels. Colloids Surf A 187–188:531–538CrossRef Gavalda S, Kaneko K, Thomson KT, Gubbins KE (2001) Molecular modeling of carbon aerogels. Colloids Surf A 187–188:531–538CrossRef
63.
Zurück zum Zitat Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud JN, Béguin F, Pirard JP (2005) Carbon aerogels, cryogels and xerogels: influence of drying method on the textural properties of porous carbon materials. Carbon 43(12):2481–2494CrossRef Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud JN, Béguin F, Pirard JP (2005) Carbon aerogels, cryogels and xerogels: influence of drying method on the textural properties of porous carbon materials. Carbon 43(12):2481–2494CrossRef
64.
Zurück zum Zitat Smirnova A, Dong X, Hara H, Vasiliev A, Sammes N (2005) Novel carbon aerogel-supported catalysts for PEM fuel cell application. Int J Hydrogen Energy 30(2):149–158CrossRef Smirnova A, Dong X, Hara H, Vasiliev A, Sammes N (2005) Novel carbon aerogel-supported catalysts for PEM fuel cell application. Int J Hydrogen Energy 30(2):149–158CrossRef
65.
Zurück zum Zitat Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103(37):7743–7746CrossRef Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103(37):7743–7746CrossRef
66.
Zurück zum Zitat Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713CrossRef Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713CrossRef
67.
Zurück zum Zitat Lee J, Kim J, Kyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094CrossRef Lee J, Kim J, Kyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094CrossRef
68.
Zurück zum Zitat Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Ordered mesoporous carbon. Adv Mater 13(9):677–681CrossRef Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Ordered mesoporous carbon. Adv Mater 13(9):677–681CrossRef
69.
Zurück zum Zitat Lee HI, Kim JH, You DJ, Lee JE, Kim JM, Ahn WS, Pak C, Joo SH, Chang H, Seung D (2008) Rational synthesis pathway for ordered mesoporous carbon with controllable 30- to 100-Angstrom pores. Adv Mater 20(4):757–762CrossRef Lee HI, Kim JH, You DJ, Lee JE, Kim JM, Ahn WS, Pak C, Joo SH, Chang H, Seung D (2008) Rational synthesis pathway for ordered mesoporous carbon with controllable 30- to 100-Angstrom pores. Adv Mater 20(4):757–762CrossRef
70.
Zurück zum Zitat Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersion of platinum nanoparticles. Nature 412(6843):169–172CrossRef Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersion of platinum nanoparticles. Nature 412(6843):169–172CrossRef
71.
Zurück zum Zitat Shrestha S, Liu Y, Mustain WE (2011) Electrocatalytic activity and stability of Pt clusters on state-of-art supports: a review. Catal Rev Sci Eng 53(3):256–336CrossRef Shrestha S, Liu Y, Mustain WE (2011) Electrocatalytic activity and stability of Pt clusters on state-of-art supports: a review. Catal Rev Sci Eng 53(3):256–336CrossRef
72.
Zurück zum Zitat Du CY, Yang T, Shi PF, Yin GP, Cheng XQ (2006) Performance analysis of the ordered and the conventional catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 51(23):4934–4941CrossRef Du CY, Yang T, Shi PF, Yin GP, Cheng XQ (2006) Performance analysis of the ordered and the conventional catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 51(23):4934–4941CrossRef
73.
Zurück zum Zitat Fang B, Kim M, Kim JH, Yu JS (2008) Controllable synthesis of hierarchical nanostructured hollow core/mesoporous shell carbon for electrochemical hydrogen storage. Langmuir 24(20):12068–12072CrossRef Fang B, Kim M, Kim JH, Yu JS (2008) Controllable synthesis of hierarchical nanostructured hollow core/mesoporous shell carbon for electrochemical hydrogen storage. Langmuir 24(20):12068–12072CrossRef
74.
Zurück zum Zitat Gross AF, Nowak AP (2010) Hierarchical carbon foams with independently tunable mesopore and macropore size distributions. Langmuir 26(13):11378–11383CrossRef Gross AF, Nowak AP (2010) Hierarchical carbon foams with independently tunable mesopore and macropore size distributions. Langmuir 26(13):11378–11383CrossRef
75.
Zurück zum Zitat Fang B, Kim JH, Lee C, Yu JS (2008) Hollow macroporous core/mesoporous shell carbon with a tailored structure as a cathode electrocatalysts support for proton exchange membrane fuel cells. J Phys Chem C 112(2):639–645CrossRef Fang B, Kim JH, Lee C, Yu JS (2008) Hollow macroporous core/mesoporous shell carbon with a tailored structure as a cathode electrocatalysts support for proton exchange membrane fuel cells. J Phys Chem C 112(2):639–645CrossRef
76.
Zurück zum Zitat Fang B, Kim JH, Kim M, Kim M, Yu JS (2009) Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell. Phys Chem Chem Phys 11(9):1380–1387CrossRef Fang B, Kim JH, Kim M, Kim M, Yu JS (2009) Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell. Phys Chem Chem Phys 11(9):1380–1387CrossRef
77.
Zurück zum Zitat Fang B, Kim JH, Kim M, Yu JS (2009) Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem Mater 21(5):789–796CrossRef Fang B, Kim JH, Kim M, Yu JS (2009) Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem Mater 21(5):789–796CrossRef
78.
Zurück zum Zitat Khomyakov PA, Giovannetti G, Rusu PC, Brocks G, van den Brink J, Kelly PJ (2009) First-principles study of the interaction and charge transfer between graphene and metals. Phys Rev B 79(19):195425CrossRef Khomyakov PA, Giovannetti G, Rusu PC, Brocks G, van den Brink J, Kelly PJ (2009) First-principles study of the interaction and charge transfer between graphene and metals. Phys Rev B 79(19):195425CrossRef
79.
Zurück zum Zitat Gong C, Lee G, Shan B, Vogel EM, Wallace RM, Cho K (2010) First-principle study of metal-graphene interfaces. J Appl Phys 108(12):123711CrossRef Gong C, Lee G, Shan B, Vogel EM, Wallace RM, Cho K (2010) First-principle study of metal-graphene interfaces. J Appl Phys 108(12):123711CrossRef
80.
Zurück zum Zitat Kong KJ, Choi Y, Ryu BH, Lee JO, Chang H (2006) Investigation of metal/carbon-related materials for fuel cell applications by electronic structure calculations. Mater Sci Eng C 26(5–7):1207–1210CrossRef Kong KJ, Choi Y, Ryu BH, Lee JO, Chang H (2006) Investigation of metal/carbon-related materials for fuel cell applications by electronic structure calculations. Mater Sci Eng C 26(5–7):1207–1210CrossRef
81.
Zurück zum Zitat Okamoto Y (2006) Density-functional calculations of icosahedral M13 (M = Pt and Au) clusters on graphene sheets and flakes. Chem Phys Lett 420(4–6):382–386CrossRef Okamoto Y (2006) Density-functional calculations of icosahedral M13 (M = Pt and Au) clusters on graphene sheets and flakes. Chem Phys Lett 420(4–6):382–386CrossRef
82.
Zurück zum Zitat Wang JG, Lv YA, Li XN, Dong M (2009) Point-defect mediated bonding of Pt clusters on (5, 5) carbon nanotubes. J Phys Chem C 113(3):890–893CrossRef Wang JG, Lv YA, Li XN, Dong M (2009) Point-defect mediated bonding of Pt clusters on (5, 5) carbon nanotubes. J Phys Chem C 113(3):890–893CrossRef
83.
Zurück zum Zitat Yumura T, Kimura K, Kobayashi H, Tanaka R, Okumura N, Yamabe T (2009) The use of nanometer-sized hydrographene species for support material for fuel cell electrode catalysts: a theoretical proposal. Phys Chem Chem Phys 11(37):8275–8284CrossRef Yumura T, Kimura K, Kobayashi H, Tanaka R, Okumura N, Yamabe T (2009) The use of nanometer-sized hydrographene species for support material for fuel cell electrode catalysts: a theoretical proposal. Phys Chem Chem Phys 11(37):8275–8284CrossRef
84.
Zurück zum Zitat Qin W, Li X (2010) A theoretical study on the catalytic synergetic effects of Pt/graphene nanocomposites. J Phys Chem C 114(44):19009–19015CrossRef Qin W, Li X (2010) A theoretical study on the catalytic synergetic effects of Pt/graphene nanocomposites. J Phys Chem C 114(44):19009–19015CrossRef
85.
Zurück zum Zitat Okazaki-Maeda K, Morikawa Y, Tanaka S, Kohyama M (2010) Structures of Pt clusters on graphene by first-principles calculations. Surf Sci 604(2):144–154CrossRef Okazaki-Maeda K, Morikawa Y, Tanaka S, Kohyama M (2010) Structures of Pt clusters on graphene by first-principles calculations. Surf Sci 604(2):144–154CrossRef
86.
Zurück zum Zitat Yamakawa S, Okazaki-Maeda K, Kohyama M, Hyodo S (2008) Phase-field model for deposition process of platinum nanoparticles on carbon substrate. J Phys Conf Ser 100:072042CrossRef Yamakawa S, Okazaki-Maeda K, Kohyama M, Hyodo S (2008) Phase-field model for deposition process of platinum nanoparticles on carbon substrate. J Phys Conf Ser 100:072042CrossRef
87.
Zurück zum Zitat Kolasinski KW (2008) Surface science: foundations of catalysis and nanoscience, 2nd edn. Wiley, Chichester Kolasinski KW (2008) Surface science: foundations of catalysis and nanoscience, 2nd edn. Wiley, Chichester
88.
Zurück zum Zitat Zoval JV, Lee J, Gorer S, Penner RM (1998) Electrochemical preparation of platinum nanocrystallite s with size selectivity on basal plane oriented graphite surfaces. J Phys Chem B 102(7):1166–1175CrossRef Zoval JV, Lee J, Gorer S, Penner RM (1998) Electrochemical preparation of platinum nanocrystallite s with size selectivity on basal plane oriented graphite surfaces. J Phys Chem B 102(7):1166–1175CrossRef
89.
Zurück zum Zitat Toyoda E, Jinnouchi R, Hatanaka T, Morimoto Y, Mitsuhara K, Visikovskiy A, Kido Y (2011) The d-band structure of Pt nanoclusters correlated with the catalytic activity for an oxygen reduction reaction. J Phys Chem C 115(43):21236–21240CrossRef Toyoda E, Jinnouchi R, Hatanaka T, Morimoto Y, Mitsuhara K, Visikovskiy A, Kido Y (2011) The d-band structure of Pt nanoclusters correlated with the catalytic activity for an oxygen reduction reaction. J Phys Chem C 115(43):21236–21240CrossRef
90.
Zurück zum Zitat Jinnouchi R, Toyoda E, Hatanaka T, Morimoto Y (2010) First principles calculations on site-dependent dissolution potentials of supported and unsupported Pt particles. J Phys Chem C 114(3):17557–17568CrossRef Jinnouchi R, Toyoda E, Hatanaka T, Morimoto Y (2010) First principles calculations on site-dependent dissolution potentials of supported and unsupported Pt particles. J Phys Chem C 114(3):17557–17568CrossRef
91.
Zurück zum Zitat Roy S, Christensen PA, Hamnett A, Thomas KM, Trapp V (1996) Direct methanol fuel cell cathodes with sulfur and nitrogen-based carbon functionality. J Electrochem Soc 143(10):3073–3079CrossRef Roy S, Christensen PA, Hamnett A, Thomas KM, Trapp V (1996) Direct methanol fuel cell cathodes with sulfur and nitrogen-based carbon functionality. J Electrochem Soc 143(10):3073–3079CrossRef
92.
Zurück zum Zitat Ye S, Vijh AK, Dao LH (1996) A new fuel cell electrocatalyst based on highly porous carbonized polyacrylonitrile foam with very low platinum loading. J Electrochem Soc 143(1):L7–L9CrossRef Ye S, Vijh AK, Dao LH (1996) A new fuel cell electrocatalyst based on highly porous carbonized polyacrylonitrile foam with very low platinum loading. J Electrochem Soc 143(1):L7–L9CrossRef
93.
Zurück zum Zitat Ye S, Vijh AK, Dao LH (1996) Oxygen reduction on a new electrocatalyst based on highly porous carbonized polyacrylonitrile microcellular foam with very low platinum loading. J Electroanal Chem 415(1–2):115–121 Ye S, Vijh AK, Dao LH (1996) Oxygen reduction on a new electrocatalyst based on highly porous carbonized polyacrylonitrile microcellular foam with very low platinum loading. J Electroanal Chem 415(1–2):115–121
94.
Zurück zum Zitat Ye S, Vijh AK, Wang ZY, Dao LH (1997) A new electrocatalyst consisting of a molecularly homogeneous platinum-aerogel nanocomposite. Can J Chem 75(11):1666–1673CrossRef Ye S, Vijh AK, Wang ZY, Dao LH (1997) A new electrocatalyst consisting of a molecularly homogeneous platinum-aerogel nanocomposite. Can J Chem 75(11):1666–1673CrossRef
95.
Zurück zum Zitat Ye S, Vijh AK, Dao LH (1997) A new fuel cell electrocatalyst based on carbonized polyacrylonitrile foam. J Electrochem Soc 144(1):90–95CrossRef Ye S, Vijh AK, Dao LH (1997) A new fuel cell electrocatalyst based on carbonized polyacrylonitrile foam. J Electrochem Soc 144(1):90–95CrossRef
96.
Zurück zum Zitat Ye S, Vijh AK, Dao LH (1997) Fractal dimension of platinum particles dispersed in highly porous carbonized polyacrylonitrile microcellular foam. J Electrochem Soc 144(5):1734–1738CrossRef Ye S, Vijh AK, Dao LH (1997) Fractal dimension of platinum particles dispersed in highly porous carbonized polyacrylonitrile microcellular foam. J Electrochem Soc 144(5):1734–1738CrossRef
97.
Zurück zum Zitat Matter PH, Ozkan US (2006) Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal Lett 109(3–4):115–123CrossRef Matter PH, Ozkan US (2006) Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal Lett 109(3–4):115–123CrossRef
98.
Zurück zum Zitat Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764CrossRef Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764CrossRef
99.
Zurück zum Zitat Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as a efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326CrossRef Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as a efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326CrossRef
100.
Zurück zum Zitat Shao Y, Sui J, Yin G, Gao Y (2008) Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal B 79(1):89–99CrossRef Shao Y, Sui J, Yin G, Gao Y (2008) Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal B 79(1):89–99CrossRef
101.
Zurück zum Zitat Czerw R, Terrones M, Charlier JC, Blasé X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan PM, Blau W, Rühle M, Carroll DL (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 1(9):457–460CrossRef Czerw R, Terrones M, Charlier JC, Blasé X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan PM, Blau W, Rühle M, Carroll DL (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 1(9):457–460CrossRef
102.
Zurück zum Zitat Ma X, Wang E, Zhou W, Jefferson DA, Chen J, Deng S, Xu N, Yuan J (1999) Polymerized carbon nanobells and their field-emission properties. Appl Phys Lett 75(20):3105–3107CrossRef Ma X, Wang E, Zhou W, Jefferson DA, Chen J, Deng S, Xu N, Yuan J (1999) Polymerized carbon nanobells and their field-emission properties. Appl Phys Lett 75(20):3105–3107CrossRef
103.
Zurück zum Zitat Kurt R, Karimi A (2001) Influence of nitrogen on the growth mechanism of decorated C:N nanotubes. Chemphyschem 2(6):388–392CrossRef Kurt R, Karimi A (2001) Influence of nitrogen on the growth mechanism of decorated C:N nanotubes. Chemphyschem 2(6):388–392CrossRef
104.
Zurück zum Zitat Sjöström H, Stafström S, Boman M, Sundgren JE (1995) Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Phys Rev Lett 75(7):1336–1339CrossRef Sjöström H, Stafström S, Boman M, Sundgren JE (1995) Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Phys Rev Lett 75(7):1336–1339CrossRef
105.
Zurück zum Zitat Maldonado S, Stevenson KJ (2005) Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B 109(10):4707–4716CrossRef Maldonado S, Stevenson KJ (2005) Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B 109(10):4707–4716CrossRef
106.
Zurück zum Zitat Stafström S (2000) Reactivity of curved and planar carbon-nitride structures. Appl Phys Lett 77(24):3941–3943CrossRef Stafström S (2000) Reactivity of curved and planar carbon-nitride structures. Appl Phys Lett 77(24):3941–3943CrossRef
107.
Zurück zum Zitat Pels JR, Kaptejin F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33(11):1641–1653CrossRef Pels JR, Kaptejin F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33(11):1641–1653CrossRef
108.
Zurück zum Zitat Holme T, Zhou Y, Pasquarelli R, O’Hayre R (2010) First principles study of doped carbon supports for enhanced platinum catalysts. Phys Chem Chem Phys 12(32):9461–9468CrossRef Holme T, Zhou Y, Pasquarelli R, O’Hayre R (2010) First principles study of doped carbon supports for enhanced platinum catalysts. Phys Chem Chem Phys 12(32):9461–9468CrossRef
109.
Zurück zum Zitat Groves MN, Chan ASW, Malardier-Jugroot C, Jugroot M (2009) Improving platinum catalyst binding energy to graphene through nitrogen doping. Chem Phys Lett 481(4–6):214–219CrossRef Groves MN, Chan ASW, Malardier-Jugroot C, Jugroot M (2009) Improving platinum catalyst binding energy to graphene through nitrogen doping. Chem Phys Lett 481(4–6):214–219CrossRef
110.
Zurück zum Zitat Zhou Y, Neyerlin K, Olson TS, Plypenko S, Bult J, Dinh HN, Gennett T, Shao Z, O’Hayre R (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3(10):1437–1446CrossRef Zhou Y, Neyerlin K, Olson TS, Plypenko S, Bult J, Dinh HN, Gennett T, Shao Z, O’Hayre R (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3(10):1437–1446CrossRef
111.
Zurück zum Zitat Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88(1–2):1–24CrossRef Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88(1–2):1–24CrossRef
112.
Zurück zum Zitat Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22(2):390–395CrossRef Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22(2):390–395CrossRef
113.
Zurück zum Zitat Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1):205–211CrossRef Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1):205–211CrossRef
114.
Zurück zum Zitat Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 50(31):7132–7135CrossRef Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed 50(31):7132–7135CrossRef
115.
Zurück zum Zitat Liu ZW, Peng F, Wang HJ, Yu H, Zheng WX, Yang J (2011) Phosphorous-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew Chem Int Ed 50(14):3257–3261CrossRef Liu ZW, Peng F, Wang HJ, Yu H, Zheng WX, Yang J (2011) Phosphorous-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew Chem Int Ed 50(14):3257–3261CrossRef
116.
Zurück zum Zitat Wang J, Chen Y, Zhang Y, Ionescu MI, Li R, Sun X, Ye S, Knights S (2011) 3D boron doped carbon nanorods/carbon nanofiber hybrid composite: synthesis and application in highly stable proton exchange membrane fuel cell. J Mater Chem 21(45):18195–18198CrossRef Wang J, Chen Y, Zhang Y, Ionescu MI, Li R, Sun X, Ye S, Knights S (2011) 3D boron doped carbon nanorods/carbon nanofiber hybrid composite: synthesis and application in highly stable proton exchange membrane fuel cell. J Mater Chem 21(45):18195–18198CrossRef
117.
Zurück zum Zitat Acharya CK, Turner CH (2006) Stabilization of platinum clusters by substitutional boron dopants in carbon supports. J Phys Chem B 110(36):17706–17710CrossRef Acharya CK, Turner CH (2006) Stabilization of platinum clusters by substitutional boron dopants in carbon supports. J Phys Chem B 110(36):17706–17710CrossRef
118.
Zurück zum Zitat Acharya CK, Sullivan DI, Turner CH (2008) Characterizing the interaction of Pt and PtRu clusters with boron-doped, nitrogen-doped, and activated carbon: density functional theory calculations and parameterization. J Phys Chem C 112(35):13607–13622CrossRef Acharya CK, Sullivan DI, Turner CH (2008) Characterizing the interaction of Pt and PtRu clusters with boron-doped, nitrogen-doped, and activated carbon: density functional theory calculations and parameterization. J Phys Chem C 112(35):13607–13622CrossRef
119.
Zurück zum Zitat Acharya CK, Li W, Liu Z, Kwon G, Turner CH, Lane AM, Nikles D, Klein T, Weaver M (2009) Effect of boron doping in the carbon support on platinum nanoparticles and carbon corrosion. J Power Sourc 192(2):324–329CrossRef Acharya CK, Li W, Liu Z, Kwon G, Turner CH, Lane AM, Nikles D, Klein T, Weaver M (2009) Effect of boron doping in the carbon support on platinum nanoparticles and carbon corrosion. J Power Sourc 192(2):324–329CrossRef
120.
Zurück zum Zitat Deak DV, Biddinger EJ, Luthman KA, Ozkan US (2010) The effect of phosphorous in nitrogen-containing nanostructures on oxygen reduction in PEM fuel cells. Carbon 48(12):3637–3659CrossRef Deak DV, Biddinger EJ, Luthman KA, Ozkan US (2010) The effect of phosphorous in nitrogen-containing nanostructures on oxygen reduction in PEM fuel cells. Carbon 48(12):3637–3659CrossRef
121.
Zurück zum Zitat Ozaki J, Kimura N, Anahara T, Oya A (2007) Preparation and oxygen reduction activity of BN-doped carbons. Carbon 45(9):1847–1853CrossRef Ozaki J, Kimura N, Anahara T, Oya A (2007) Preparation and oxygen reduction activity of BN-doped carbons. Carbon 45(9):1847–1853CrossRef
122.
Zurück zum Zitat Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki JI, Miyata S (2010) Enhanced catalytic activity of carbon alloy catalysts codoped with boron and nitrogen for oxygen reduction reaction. J Phys Chem C 114(19):8933–8937CrossRef Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki JI, Miyata S (2010) Enhanced catalytic activity of carbon alloy catalysts codoped with boron and nitrogen for oxygen reduction reaction. J Phys Chem C 114(19):8933–8937CrossRef
123.
Zurück zum Zitat Wohlgemuth SA, White RJ, Willinger MG, Titirici MM, Antonietti M (2012) A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity for oxygen reduction reaction. Green Chem 14:1515–1523CrossRef Wohlgemuth SA, White RJ, Willinger MG, Titirici MM, Antonietti M (2012) A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity for oxygen reduction reaction. Green Chem 14:1515–1523CrossRef
124.
Zurück zum Zitat Ganesan R, Lee JS (2005) Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. Angew Chem Int Ed 44(40):6557–6560CrossRef Ganesan R, Lee JS (2005) Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. Angew Chem Int Ed 44(40):6557–6560CrossRef
125.
Zurück zum Zitat Zellner MB, Chen JG (2005) Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts. Catal Today 99(3–4):299–307CrossRef Zellner MB, Chen JG (2005) Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts. Catal Today 99(3–4):299–307CrossRef
126.
Zurück zum Zitat Esposito DV, Chen JG (2011) Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations. Energy Environ Sci 4(10):3900–3912CrossRef Esposito DV, Chen JG (2011) Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations. Energy Environ Sci 4(10):3900–3912CrossRef
127.
Zurück zum Zitat Liu Y, Mustain WE (2011) Structural and electrochemical studies of Pt clusters supported on high-surface-area tungsten carbide for oxygen reduction. ACS Catal 1(3):212–220CrossRef Liu Y, Mustain WE (2011) Structural and electrochemical studies of Pt clusters supported on high-surface-area tungsten carbide for oxygen reduction. ACS Catal 1(3):212–220CrossRef
128.
Zurück zum Zitat Chhina H, Campbell S, Kesler O (2007) Thermal and electrochemical stability of tungsten carbide catalyst supports. J Power Sourc 164(2):431–440CrossRef Chhina H, Campbell S, Kesler O (2007) Thermal and electrochemical stability of tungsten carbide catalyst supports. J Power Sourc 164(2):431–440CrossRef
129.
Zurück zum Zitat Chhina H, Campbell S, Kesler O (2008) High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells. J Power Sourc 179(1):50–59CrossRef Chhina H, Campbell S, Kesler O (2008) High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells. J Power Sourc 179(1):50–59CrossRef
130.
Zurück zum Zitat Wang Y, Song S, Maragou V, Shen PK, Tsiakaras P (2009) High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction. Appl Catal B 89(1–2):223–228CrossRef Wang Y, Song S, Maragou V, Shen PK, Tsiakaras P (2009) High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction. Appl Catal B 89(1–2):223–228CrossRef
131.
Zurück zum Zitat Liang C, Ding L, Li C, Pang M, Su D, Li W, Wang Y (2010) Nanostructured WCx/CNT as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction. Energy Environ Sci 3(8):1121–1127CrossRef Liang C, Ding L, Li C, Pang M, Su D, Li W, Wang Y (2010) Nanostructured WCx/CNT as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction. Energy Environ Sci 3(8):1121–1127CrossRef
132.
Zurück zum Zitat Hsu IJ, Hansgent DA, McCandless BE, Willis BG, Chen JG (2011) Atomic layer deposition of Pt on tungsten monocarbide (WC) for the oxygen reduction reaction. J Phys Chem C 115(9):3709–3715CrossRef Hsu IJ, Hansgent DA, McCandless BE, Willis BG, Chen JG (2011) Atomic layer deposition of Pt on tungsten monocarbide (WC) for the oxygen reduction reaction. J Phys Chem C 115(9):3709–3715CrossRef
133.
Zurück zum Zitat Li G, Ma C, Zheng Y, Zhang W (2005) Preparation and electrocatalytic activity of hollow global tungsten carbide with mesoporosity. Microporous Mesoporous Mater 85(3):234–240CrossRef Li G, Ma C, Zheng Y, Zhang W (2005) Preparation and electrocatalytic activity of hollow global tungsten carbide with mesoporosity. Microporous Mesoporous Mater 85(3):234–240CrossRef
134.
Zurück zum Zitat Hara Y, Minami N, Matsumoto H, Itagaki H (2007) New synthesis of tungsten carbide particles and the synergistic effect with Pt metal as a hydrogen oxidation catalyst for fuel cell applications. Appl Catal A 332(2):289–296CrossRef Hara Y, Minami N, Matsumoto H, Itagaki H (2007) New synthesis of tungsten carbide particles and the synergistic effect with Pt metal as a hydrogen oxidation catalyst for fuel cell applications. Appl Catal A 332(2):289–296CrossRef
135.
Zurück zum Zitat Li G, Ma C, Tang J, Zheng Y (2007) Preparation of tungsten carbide porous sphere core wrapped by porous multiwall. Mater Lett 61(4–5):991–993CrossRef Li G, Ma C, Tang J, Zheng Y (2007) Preparation of tungsten carbide porous sphere core wrapped by porous multiwall. Mater Lett 61(4–5):991–993CrossRef
136.
Zurück zum Zitat Liu Y, Shrestha S, Mustain WE (2012) Synthesis of nanosize tungsten oxide and its evaluation as an electrocatalyst support for oxygen reduction in acid media. ACS Catal 2(3):456–463CrossRef Liu Y, Shrestha S, Mustain WE (2012) Synthesis of nanosize tungsten oxide and its evaluation as an electrocatalyst support for oxygen reduction in acid media. ACS Catal 2(3):456–463CrossRef
137.
Zurück zum Zitat Chhina H, Campbell S, Kesler O (2007) Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs. J Electrochem Soc 154(6):B533–B539CrossRef Chhina H, Campbell S, Kesler O (2007) Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs. J Electrochem Soc 154(6):B533–B539CrossRef
138.
Zurück zum Zitat Reichman B, Bard AJ (1979) The electrochromic process at WO3 electrodes prepared by vacuum evaporation and anodic oxidation of W. J Electrochem Soc 126(4):583–591CrossRef Reichman B, Bard AJ (1979) The electrochromic process at WO3 electrodes prepared by vacuum evaporation and anodic oxidation of W. J Electrochem Soc 126(4):583–591CrossRef
139.
Zurück zum Zitat Chen KY, Tseung ACC (1996) Effect of nafion dispersion on the stability of Pt/WO3 electrodes. J Electrochem Soc 143(9):2703–2707CrossRef Chen KY, Tseung ACC (1996) Effect of nafion dispersion on the stability of Pt/WO3 electrodes. J Electrochem Soc 143(9):2703–2707CrossRef
140.
Zurück zum Zitat Raghuveer V, Viswanathan B (2005) Synthesis, characterization and electrochemical studies of Ti-incorporated tungsten trioxides as platinum supports for methanol oxidation. J Power Sourc 144(1):1–10CrossRef Raghuveer V, Viswanathan B (2005) Synthesis, characterization and electrochemical studies of Ti-incorporated tungsten trioxides as platinum supports for methanol oxidation. J Power Sourc 144(1):1–10CrossRef
141.
Zurück zum Zitat Timperman L, Lewera A, Vogel W, Alonso-Vante N (2010) Nanostructured platinum becomes alloyed at oxide-composite substrate. Electrochem Commun 12(12):1772–1775CrossRef Timperman L, Lewera A, Vogel W, Alonso-Vante N (2010) Nanostructured platinum becomes alloyed at oxide-composite substrate. Electrochem Commun 12(12):1772–1775CrossRef
142.
Zurück zum Zitat Lewera A, Timperman L, Roguska A, Alonso-Vante N (2011) Metal-support interactions between nanosized Pt and metal oxides (WO3 and TiO2) studied using X-ray photoelectron spectroscopy. J Phys Chem C 115(41):20153–20159CrossRef Lewera A, Timperman L, Roguska A, Alonso-Vante N (2011) Metal-support interactions between nanosized Pt and metal oxides (WO3 and TiO2) studied using X-ray photoelectron spectroscopy. J Phys Chem C 115(41):20153–20159CrossRef
143.
Zurück zum Zitat Liu Y, Mustain WE (2012) Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts. Int J Hydrogen Energy 37(11):8929–8938CrossRef Liu Y, Mustain WE (2012) Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts. Int J Hydrogen Energy 37(11):8929–8938CrossRef
144.
Zurück zum Zitat Pang M, Li C, Ding L, Zhang J, Su D, Li W, Liang C (2010) Microwave-assisted preparation of Mo2C/CNTs nanocomposites as efficient electrocatalyst supports for oxygen reduction reaction. Ind Eng Chem Res 49(9):4169–4174CrossRef Pang M, Li C, Ding L, Zhang J, Su D, Li W, Liang C (2010) Microwave-assisted preparation of Mo2C/CNTs nanocomposites as efficient electrocatalyst supports for oxygen reduction reaction. Ind Eng Chem Res 49(9):4169–4174CrossRef
145.
Zurück zum Zitat Weigert EC, Esposito DV, Chen JG (2009) Cyclic voltammetry and X-ray photoelectron spectroscopy studies of electrochemical stability of clean and Pt-modified tungsten and molybdenum carbide (WC and Mo2C) electrocatalysts. J Power Sourc 193(2):501–506CrossRef Weigert EC, Esposito DV, Chen JG (2009) Cyclic voltammetry and X-ray photoelectron spectroscopy studies of electrochemical stability of clean and Pt-modified tungsten and molybdenum carbide (WC and Mo2C) electrocatalysts. J Power Sourc 193(2):501–506CrossRef
146.
Zurück zum Zitat Hayden BE, Malevich DV, Pletcher D (2001) Electrode coatings from sprayed titanium dioxide nanoparticles − behaviour in NaOH solutions. Electrochem Commun 3:390–394CrossRef Hayden BE, Malevich DV, Pletcher D (2001) Electrode coatings from sprayed titanium dioxide nanoparticles − behaviour in NaOH solutions. Electrochem Commun 3:390–394CrossRef
147.
Zurück zum Zitat Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions: group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100(1):170–175CrossRef Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions: group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100(1):170–175CrossRef
148.
Zurück zum Zitat Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Strong interactions in metal-supported catalysts. Science 211(4487):1121–1125CrossRef Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Strong interactions in metal-supported catalysts. Science 211(4487):1121–1125CrossRef
149.
Zurück zum Zitat Hammer B, Norskov JK (2000) Theoretical surface science and catalysis-calculations and concepts. Adv Catal 45:71–129CrossRef Hammer B, Norskov JK (2000) Theoretical surface science and catalysis-calculations and concepts. Adv Catal 45:71–129CrossRef
150.
Zurück zum Zitat Ioroi T, Siroma Z, Fujiwara N, Yamazaki SI, Yasuda K (2005) Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem Commun 7(2):183–188CrossRef Ioroi T, Siroma Z, Fujiwara N, Yamazaki SI, Yasuda K (2005) Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem Commun 7(2):183–188CrossRef
151.
Zurück zum Zitat Chhina H, Campbell S, Kesler O (2006) An oxidant-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J Power Sourc 161(2):893–900CrossRef Chhina H, Campbell S, Kesler O (2006) An oxidant-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J Power Sourc 161(2):893–900CrossRef
152.
Zurück zum Zitat Smith JR, Walsh FC, Clarke RL (1998) Electrodes based on magnéli phase titanium oxides: the properties and applications of Ebonex® materials. J Appl Electrochem 28(10):1021–1033CrossRef Smith JR, Walsh FC, Clarke RL (1998) Electrodes based on magnéli phase titanium oxides: the properties and applications of Ebonex® materials. J Appl Electrochem 28(10):1021–1033CrossRef
153.
Zurück zum Zitat Bartholomew RF, Frankl DR (1969) Electrical properties of some titanium oxides. Phys Rev 187(3):828–833CrossRef Bartholomew RF, Frankl DR (1969) Electrical properties of some titanium oxides. Phys Rev 187(3):828–833CrossRef
154.
Zurück zum Zitat Graves JE, Pletcher D, Clarke RL, Walsh FC (1991) The electrochemistry of magnéli phase titanium oxide ceramic electrodes: Part I. The deposition and properties of metal coatings. J Appl Electrochem 21(10):848–857CrossRef Graves JE, Pletcher D, Clarke RL, Walsh FC (1991) The electrochemistry of magnéli phase titanium oxide ceramic electrodes: Part I. The deposition and properties of metal coatings. J Appl Electrochem 21(10):848–857CrossRef
155.
Zurück zum Zitat Hu F, Ding F, Song S, Shen PK (2006) Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. J Power Sourc 163(1):415–419CrossRef Hu F, Ding F, Song S, Shen PK (2006) Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation. J Power Sourc 163(1):415–419CrossRef
156.
Zurück zum Zitat Shanmugam S, Gedanken A (2007) Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. Small 3(7):1189–1193CrossRef Shanmugam S, Gedanken A (2007) Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. Small 3(7):1189–1193CrossRef
157.
Zurück zum Zitat Chen G, Bare SR, Mallouk TE (2002) Development of supported bifunctional electrocatalysts for united regenerative fuel cells. J Electrochem Soc 149(8):A1092–A1099CrossRef Chen G, Bare SR, Mallouk TE (2002) Development of supported bifunctional electrocatalysts for united regenerative fuel cells. J Electrochem Soc 149(8):A1092–A1099CrossRef
158.
Zurück zum Zitat Chhina H (2009) Oxidation resistant catalyst support for proton exchange membrane fuel cells. Ph.D. Thesis, Mechanical and Industrial Engineering, University of Toronto Chhina H (2009) Oxidation resistant catalyst support for proton exchange membrane fuel cells. Ph.D. Thesis, Mechanical and Industrial Engineering, University of Toronto
159.
Zurück zum Zitat Park KW, Seol KS (2007) Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem Commun 9(9):2256–2260CrossRef Park KW, Seol KS (2007) Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem Commun 9(9):2256–2260CrossRef
160.
Zurück zum Zitat Nakada M, Ishihara A, Mitsushima S, Kamiya N, Ota K (2007) Effect on tin oxides on oxide formation and reduction of platinum particles. Electrochem Solid State Lett 10(1):F1–F4CrossRef Nakada M, Ishihara A, Mitsushima S, Kamiya N, Ota K (2007) Effect on tin oxides on oxide formation and reduction of platinum particles. Electrochem Solid State Lett 10(1):F1–F4CrossRef
161.
Zurück zum Zitat Saha MS, Li R, Cai M, Sun X (2007) High electrocatalytic activity of platinum nanoparticles on SnO2 nanowire-based electrodes. Electrochem Solid State Lett 10(8):B130–B133CrossRef Saha MS, Li R, Cai M, Sun X (2007) High electrocatalytic activity of platinum nanoparticles on SnO2 nanowire-based electrodes. Electrochem Solid State Lett 10(8):B130–B133CrossRef
162.
Zurück zum Zitat Chang G, Oyama M, Hirao K (2006) In situ chemical reductive growth on platinum nanoparticles on indium tin oxide surfaces and their electrochemical applications. J Phys Chem B 110(4):1860–1865CrossRef Chang G, Oyama M, Hirao K (2006) In situ chemical reductive growth on platinum nanoparticles on indium tin oxide surfaces and their electrochemical applications. J Phys Chem B 110(4):1860–1865CrossRef
163.
Zurück zum Zitat Chang G, Oyama M, Hirao K (2006) Seed-mediated growth of palladium nanocrystals on indium tin oxide surfaces and their applicability as modified electrodes. J Phys Chem B 110(41):20362–20368CrossRef Chang G, Oyama M, Hirao K (2006) Seed-mediated growth of palladium nanocrystals on indium tin oxide surfaces and their applicability as modified electrodes. J Phys Chem B 110(41):20362–20368CrossRef
164.
Zurück zum Zitat Garsany Y, Epshteyn A, Purdy AP, More KL, Swider-Lyons KE (2010) High-activity, durable oxygen reduction electrocatalyst: nanoscale composite of platinum-tantalum oxyphosphate on vulcan carbon. J Phys Chem Lett 1(13):1977–1981CrossRef Garsany Y, Epshteyn A, Purdy AP, More KL, Swider-Lyons KE (2010) High-activity, durable oxygen reduction electrocatalyst: nanoscale composite of platinum-tantalum oxyphosphate on vulcan carbon. J Phys Chem Lett 1(13):1977–1981CrossRef
165.
Zurück zum Zitat Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19(1):46–59CrossRef Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19(1):46–59CrossRef
166.
Zurück zum Zitat Marković NM, Schmidt TJ, Stamenković V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1(2):105–116CrossRef Marković NM, Schmidt TJ, Stamenković V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1(2):105–116CrossRef
167.
Zurück zum Zitat Ramirez-Caballero GE, Hirunsit P, Balbuena PB (2010) Shell-anchor-core structures for enhanced stability and catalytic oxygen activity. J Chem Phys 133(13):134705CrossRef Ramirez-Caballero GE, Hirunsit P, Balbuena PB (2010) Shell-anchor-core structures for enhanced stability and catalytic oxygen activity. J Chem Phys 133(13):134705CrossRef
168.
Zurück zum Zitat Liu Y, Mustain WE (2013) High stability, high activity Pt/ITO oxygen reduction electrocatalysts. J Am Chem Soc 135:530–533 Liu Y, Mustain WE (2013) High stability, high activity Pt/ITO oxygen reduction electrocatalysts. J Am Chem Soc 135:530–533
Metadaten
Titel
Promises and Challenges of Unconventional Electrocatalyst Supports
verfasst von
Sujan Shrestha
William E. Mustain
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4911-8_24