Skip to main content

2010 | OriginalPaper | Buchkapitel

6. Propagating Action Potentials

verfasst von : G. Bard Ermentrout, David H. Terman

Erschienen in: Mathematical Foundations of Neuroscience

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neurons need to communicate over long distances. This is accomplished by electrical signals, or action potentials, that propagate along the axon. We have seen that linear cables cannot transmit information very far; neural signals are able to reach long distances because there exist voltage-gated channels in the cell membrane. The combination of ions diffusing along the axon together with the nonlinear flow of ions across the membrane allows for the existence of an action potential that propagates along the axon with a constant shape and velocity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat D. G. Aronson and H. F. Weinberger. Nonlinear diffusion in population genetics, combustion and nerve pulse propagation. In J. Goldstein, editor, Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, pages 5–49. Springer, New York, 1975.CrossRef D. G. Aronson and H. F. Weinberger. Nonlinear diffusion in population genetics, combustion and nerve pulse propagation. In J. Goldstein, editor, Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, pages 5–49. Springer, New York, 1975.CrossRef
34.
Zurück zum Zitat G. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differ. Equat., 23:335–367, 1977.MathSciNetMATHCrossRef G. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differ. Equat., 23:335–367, 1977.MathSciNetMATHCrossRef
35.
Zurück zum Zitat A. Carpio, S. J. Chapman, S. Hastings, and J. B. McLeod. Wave solutions for a discrete reaction-diffusion equation. Eur. J. Appl. Math., 11(4):399–412, 2000.MathSciNetMATHCrossRef A. Carpio, S. J. Chapman, S. Hastings, and J. B. McLeod. Wave solutions for a discrete reaction-diffusion equation. Eur. J. Appl. Math., 11(4):399–412, 2000.MathSciNetMATHCrossRef
44.
Zurück zum Zitat C. Conley. Isolated invariant Sets and the Morse Index. CBMS Lecture Notes in Math, volume 38. AMS Press, Providence, RI, 1978. C. Conley. Isolated invariant Sets and the Morse Index. CBMS Lecture Notes in Math, volume 38. AMS Press, Providence, RI, 1978.
48.
Zurück zum Zitat S. Coombes and M. R. Owen. Evans functions for integral neural field equations with heaviside firing rate function. SIAM J. Appl. Dyn. Syst., 3:574–600, 2004.MathSciNetMATHCrossRef S. Coombes and M. R. Owen. Evans functions for integral neural field equations with heaviside firing rate function. SIAM J. Appl. Dyn. Syst., 3:574–600, 2004.MathSciNetMATHCrossRef
54.
Zurück zum Zitat P. Dayan and L. F. Abbott. Theoretical Neuroscience. MIT, Cambridge, MA; London, England, 2001.MATH P. Dayan and L. F. Abbott. Theoretical Neuroscience. MIT, Cambridge, MA; London, England, 2001.MATH
75.
Zurück zum Zitat G. B. Ermentrout and J. Rinzel. Waves in a simple, excitable or oscillatory, reaction-diffusion model. J. Math. Biol., 11(3):269–294, 1981.MathSciNetMATHCrossRef G. B. Ermentrout and J. Rinzel. Waves in a simple, excitable or oscillatory, reaction-diffusion model. J. Math. Biol., 11(3):269–294, 1981.MathSciNetMATHCrossRef
79.
Zurück zum Zitat G. B. Ermentrout, R. F. Galán, and N. N. Urban. Reliability, synchrony and noise. Trends Neurosci., 31:428–434, 2008.CrossRef G. B. Ermentrout, R. F. Galán, and N. N. Urban. Reliability, synchrony and noise. Trends Neurosci., 31:428–434, 2008.CrossRef
80.
85.
Zurück zum Zitat O. Feinerman, M. Segal, and E. Moses. Signal propagation along unidimensional neuronal networks. J. Neurophysiol., 94:3406–3416, 2005.CrossRef O. Feinerman, M. Segal, and E. Moses. Signal propagation along unidimensional neuronal networks. J. Neurophysiol., 94:3406–3416, 2005.CrossRef
87.
Zurück zum Zitat J. A. Feroe. Existence and stability of multiple impulse solutions of a nerve axon equation. SIAM J. Appl. Math., 42:235–246, 1982.MathSciNetMATHCrossRef J. A. Feroe. Existence and stability of multiple impulse solutions of a nerve axon equation. SIAM J. Appl. Math., 42:235–246, 1982.MathSciNetMATHCrossRef
116.
Zurück zum Zitat B. J. Hall and K. R. Delaney. Contribution of a calcium-activated non-specific conductance to NMDA receptor-mediated synaptic potentials in granule cells of the frog olfactory bulb. J. Physiol. (Lond.), 543:819–834, 2002.CrossRef B. J. Hall and K. R. Delaney. Contribution of a calcium-activated non-specific conductance to NMDA receptor-mediated synaptic potentials in granule cells of the frog olfactory bulb. J. Physiol. (Lond.), 543:819–834, 2002.CrossRef
117.
Zurück zum Zitat F. Han, N. Caporale, and Y. Dan. Reverberation of recent visual experience in spontaneous cortical waves. Neuron, 60:321–327, 2008.CrossRef F. Han, N. Caporale, and Y. Dan. Reverberation of recent visual experience in spontaneous cortical waves. Neuron, 60:321–327, 2008.CrossRef
139.
Zurück zum Zitat D. Johnston and S. M. Wu. Foundations of Cellular Neurophysiology. MIT, Cambridge, MA, 1995. D. Johnston and S. M. Wu. Foundations of Cellular Neurophysiology. MIT, Cambridge, MA, 1995.
140.
Zurück zum Zitat D. Johnston and S. Wu. Foundations of Cellular Neurophysiology. MIT, Cambridge, MA, 1999. D. Johnston and S. Wu. Foundations of Cellular Neurophysiology. MIT, Cambridge, MA, 1999.
141.
Zurück zum Zitat D. Johnston, J. C. Magee, C. M. Colbert, and B. R. Cristie. Active properties of neuronal dendrites. Annu. Rev. Neurosci., 19:165–186, 1996.CrossRef D. Johnston, J. C. Magee, C. M. Colbert, and B. R. Cristie. Active properties of neuronal dendrites. Annu. Rev. Neurosci., 19:165–186, 1996.CrossRef
144.
Zurück zum Zitat E. Kandel, J. Schwartz, and T. Jessell. Principles of Neural Science. Appleton & Lange, Norwalk, CT, 1991. E. Kandel, J. Schwartz, and T. Jessell. Principles of Neural Science. Appleton & Lange, Norwalk, CT, 1991.
146.
Zurück zum Zitat J. P. Keener. Proagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math., 47:556–572, 1987.MathSciNetMATHCrossRef J. P. Keener. Proagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math., 47:556–572, 1987.MathSciNetMATHCrossRef
184.
Zurück zum Zitat Y. Loewenstein and H. Sompolinsky. Temporal integration by calcium dynamics in a model neuron. Nat. Neurosci., 6:961–967, 2003.CrossRef Y. Loewenstein and H. Sompolinsky. Temporal integration by calcium dynamics in a model neuron. Nat. Neurosci., 6:961–967, 2003.CrossRef
185.
Zurück zum Zitat M. London and M. Hausser. Dendritic computation. Annu. Rev. Neurosci., 28:503–532, 2005.CrossRef M. London and M. Hausser. Dendritic computation. Annu. Rev. Neurosci., 28:503–532, 2005.CrossRef
186.
Zurück zum Zitat G. Maccaferri and C. J. McBain. The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. J. Physiol. (Lond.), 497( Pt 1):119–130, 1996. G. Maccaferri and C. J. McBain. The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. J. Physiol. (Lond.), 497( Pt 1):119–130, 1996.
197.
Zurück zum Zitat W. S. McCulloch and W. Pitts. The statistical organization of nervous activity. Biometrics, 4:91–99, 1948.CrossRef W. S. McCulloch and W. Pitts. The statistical organization of nervous activity. Biometrics, 4:91–99, 1948.CrossRef
226.
Zurück zum Zitat J. Rinzel. On repetitive activity in nerve. Fed. Proc., 37:2793–2802, 1978. J. Rinzel. On repetitive activity in nerve. Fed. Proc., 37:2793–2802, 1978.
288.
Zurück zum Zitat H. R. Wilson and J. D. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13:55–80, 1973.MATHCrossRef H. R. Wilson and J. D. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13:55–80, 1973.MATHCrossRef
289.
Zurück zum Zitat H. R. Wilson, R. Blake, and S. H. Lee. Dynamics of travelling waves in visual perception. Nature, 412:907–910, 2001.CrossRef H. R. Wilson, R. Blake, and S. H. Lee. Dynamics of travelling waves in visual perception. Nature, 412:907–910, 2001.CrossRef
Metadaten
Titel
Propagating Action Potentials
verfasst von
G. Bard Ermentrout
David H. Terman
Copyright-Jahr
2010
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-0-387-87708-2_6