Skip to main content
Erschienen in: Strength of Materials 1/2021

27.04.2021

Properties and Growth Kinetics of the Boride Layer of a Boriding-Strengthened Fe-Based Powder Metallurgical Material

verfasst von: H. M. Fang, G. S. Zhang, L. S. Xia

Erschienen in: Strength of Materials | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Fe-based powder metallurgical material was directly sintered by the packed powder boriding method to obtain specimens with the boride layer. These materials were treated at 1123, 1223, and 1323 K for 3, 5, 7, and 10 h, the morphology and thickness of the boride layer were examined with SEM. The phase composition of the boride layer, was analyzed with X-ray diffractometer, and the Rockwell-C indentation test was used to estimate the quality of the bonding strength between the boride layer and substrate. The growth kinetics of the layer was fitted to obtain the plot of thickness variation dynamics. The boride layer thickness is 35–183 μm. The biphase (Fe2B+FeB), and single-phase Fe2B boride layers are obtained at 1323 K and at 1123 and 1223 K, respectively. The quality of the bonding strength of the boride layer obtained at 1223 K for 5 h is approved by the HF3 grade according to the specifications. The diffusion activation energy of B atoms in this experiment is 164 kJ/mol. The sintering temperature and boriding time are closely related to the thickness of the boride layer, and the relationship between the boriding time and the thickness of the boride layer is parabolic. The squared thickness and boriding time are linearly related and consistent with the Arrhenius formula. The microhardness of the boride layer is significantly higher than that of the substrate. The number of defects in the layer is growing with time. The characteristic comb-tooth shape of the boride layer is gradually passivated, and the tip is not obvious until the front edge of the layer is relatively flat. This phenomenon is more pronounced at high temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. H. Üçisik and C. Bindal, “Fracture toughness of boride formed on low-alloy steels,” Surf. Coat. Tech., 94–95, 561–565 (1997). A. H. Üçisik and C. Bindal, “Fracture toughness of boride formed on low-alloy steels,” Surf. Coat. Tech., 94–95, 561–565 (1997).
2.
Zurück zum Zitat M. Keddam and S. M. Chentouf, “A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding,” Appl. Surf. Sci., 252, No. 2, 393–399 (2005).CrossRef M. Keddam and S. M. Chentouf, “A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding,” Appl. Surf. Sci., 252, No. 2, 393–399 (2005).CrossRef
3.
Zurück zum Zitat A. G. von Matuschka, Boronizing, Carl Hanser Verlag, Munich (1980). A. G. von Matuschka, Boronizing, Carl Hanser Verlag, Munich (1980).
4.
Zurück zum Zitat I. Uslu, H. Comert, M. Ipek, et al., “Evaluation of borides formed on AISI P20 steel,” Mater. Design, 28, No. 1, 55–61 (2007).CrossRef I. Uslu, H. Comert, M. Ipek, et al., “Evaluation of borides formed on AISI P20 steel,” Mater. Design, 28, No. 1, 55–61 (2007).CrossRef
5.
Zurück zum Zitat S. C. Singhal, “A hard diffusion boride coating for ferrous materials,” Thin Solid Films, 45, No. 2, 321–329 (1977). S. C. Singhal, “A hard diffusion boride coating for ferrous materials,” Thin Solid Films, 45, No. 2, 321–329 (1977).
6.
Zurück zum Zitat V. D. Yakhnina, A. M. Kozlov, and A. I. Luk’yanitsa, “Physicochemical characteristics of powder boronizing,” Powder Metall. Metal Ceram., 18, No. 4, 237–240 (1979).CrossRef V. D. Yakhnina, A. M. Kozlov, and A. I. Luk’yanitsa, “Physicochemical characteristics of powder boronizing,” Powder Metall. Metal Ceram., 18, No. 4, 237–240 (1979).CrossRef
7.
Zurück zum Zitat A. Calik, “Effect of powder particle size on the mechanical properties of boronized EN H320 LA steel sheets,” ISIJ Int., 53, No. 1, 160–164 (2013).CrossRef A. Calik, “Effect of powder particle size on the mechanical properties of boronized EN H320 LA steel sheets,” ISIJ Int., 53, No. 1, 160–164 (2013).CrossRef
8.
Zurück zum Zitat I. Campos-Silva, E. Hernández-Sánchez, G. Rodríguez-Castro, et al., “Indentation size effect on the Fe2B substrate interface,” Surf. Coat. Tech., 206, No. 7, 1816–1823 (2011).CrossRef I. Campos-Silva, E. Hernández-Sánchez, G. Rodríguez-Castro, et al., “Indentation size effect on the Fe2B substrate interface,” Surf. Coat. Tech., 206, No. 7, 1816–1823 (2011).CrossRef
9.
Zurück zum Zitat D. Mu and B.L. Shen, “Kinetics of solid boronizing and leaching growth of nodular cast iron,” J. Mater. Heat Treat., 35, No. 7, 187–193 (2014) (in Chinese). D. Mu and B.L. Shen, “Kinetics of solid boronizing and leaching growth of nodular cast iron,” J. Mater. Heat Treat., 35, No. 7, 187–193 (2014) (in Chinese).
10.
Zurück zum Zitat K. Genel, “Boriding kinetics of H13 steel,” Vacuum, 80, No. 5, 451–457 (2006). K. Genel, “Boriding kinetics of H13 steel,” Vacuum, 80, No. 5, 451–457 (2006).
11.
Zurück zum Zitat S. Sen, U. Sen, and C. Bindal, “An approach to kinetic study of borided steels,” Surf. Coat. Tech., 191, Nos. 2–3, 274–285 (2005). S. Sen, U. Sen, and C. Bindal, “An approach to kinetic study of borided steels,” Surf. Coat. Tech., 191, Nos. 2–3, 274–285 (2005).
12.
Zurück zum Zitat B. Mebarek, D. Madouri, A. Zanoun, and A. Belaidi, “Simulation model of monolayer growth kinetics of Fe2B phase,” Mat. Tech., 103, No. 7, 703–710 (2015).CrossRef B. Mebarek, D. Madouri, A. Zanoun, and A. Belaidi, “Simulation model of monolayer growth kinetics of Fe2B phase,” Mat. Tech., 103, No. 7, 703–710 (2015).CrossRef
13.
Zurück zum Zitat H. P. Yang, X. C. Wu, G. H. Cao, and Z. Yang, “Enhanced boronizing kinetics and high temperature wear resistance of H13 steel with boriding treatment assisted by air blast shot peening,” Surf. Coat. Tech., 307, Part A, 506–516 (2016). H. P. Yang, X. C. Wu, G. H. Cao, and Z. Yang, “Enhanced boronizing kinetics and high temperature wear resistance of H13 steel with boriding treatment assisted by air blast shot peening,” Surf. Coat. Tech., 307, Part A, 506–516 (2016).
14.
Zurück zum Zitat N. Vidakis, A. Antoniadis, and N. Bilalis, “The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds,” J. Mater. Process. Tech., 143–144, 481–485 (2003).CrossRef N. Vidakis, A. Antoniadis, and N. Bilalis, “The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds,” J. Mater. Process. Tech., 143–144, 481–485 (2003).CrossRef
15.
Zurück zum Zitat G. Palombarini and M. Carbucicchio, “Growth of boride coatings on iron,” Mater. Sci. Lett., 6, No. 10, 415–416 (1987).CrossRef G. Palombarini and M. Carbucicchio, “Growth of boride coatings on iron,” Mater. Sci. Lett., 6, No. 10, 415–416 (1987).CrossRef
16.
Zurück zum Zitat E. Medvedovski, “Formation of corrosion-resistant thermal diffusion boride coatings,” Adv. Eng. Mater., 18, No. 1, 11–33 (2016).CrossRef E. Medvedovski, “Formation of corrosion-resistant thermal diffusion boride coatings,” Adv. Eng. Mater., 18, No. 1, 11–33 (2016).CrossRef
17.
Zurück zum Zitat O. A. Gómez-Vargas, M. Keddam, and M.Ortiz-Domínguez, “Kinetics and tribological characterization of pack-borided AISI 1025 steel,” High Temp. Mater. Process., 36, No. 3, 197–208 (2017).CrossRef O. A. Gómez-Vargas, M. Keddam, and M.Ortiz-Domínguez, “Kinetics and tribological characterization of pack-borided AISI 1025 steel,” High Temp. Mater. Process., 36, No. 3, 197–208 (2017).CrossRef
18.
Zurück zum Zitat W. Jost, Diffusion in Solids, Liquids, Gases, Academic Press Inc, New York (1960). W. Jost, Diffusion in Solids, Liquids, Gases, Academic Press Inc, New York (1960).
19.
Zurück zum Zitat F. S. Chen and K. L. Wang, “The kinetics and mechanism of multi-component diffusion on AISI 1045 steel,” Surf. Coat. Tech., 115, Nos. 2–3, 239–248 (1999). F. S. Chen and K. L. Wang, “The kinetics and mechanism of multi-component diffusion on AISI 1045 steel,” Surf. Coat. Tech., 115, Nos. 2–3, 239–248 (1999).
20.
Zurück zum Zitat K. Genel, I. Ozbek, and C. Bindal, “Kinetics of boriding of AISI W1 steel,” Mater. Sci. Eng. A-Struct., 347, Nos. 1–2, 311–314 (2003). K. Genel, I. Ozbek, and C. Bindal, “Kinetics of boriding of AISI W1 steel,” Mater. Sci. Eng. A-Struct., 347, Nos. 1–2, 311–314 (2003).
21.
Zurück zum Zitat I. Campos, G. Ramírez, U. Figueroa, et al., “Evaluation of boron mobility on the phase FeB, Fe2B and diffusion zone in AISI, 1045 and M2 steels,” Appl. Surf. Sci., 253, No. 7, 3469–3475 (2007).CrossRef I. Campos, G. Ramírez, U. Figueroa, et al., “Evaluation of boron mobility on the phase FeB, Fe2B and diffusion zone in AISI, 1045 and M2 steels,” Appl. Surf. Sci., 253, No. 7, 3469–3475 (2007).CrossRef
22.
Zurück zum Zitat M. Ipek, E. G. Celebi, I. Ozbek, et al., “Investigation of boronizing kinetics of AISI 51100 steel,” J. Mater. Eng. Perform., 21, No. 5, 733–738 (2012).CrossRef M. Ipek, E. G. Celebi, I. Ozbek, et al., “Investigation of boronizing kinetics of AISI 51100 steel,” J. Mater. Eng. Perform., 21, No. 5, 733–738 (2012).CrossRef
23.
Zurück zum Zitat Z. G. Su, X. X. Lv, J. An, et al., “Role of RE element Nd on boronizing kinetics of steels,” J. Mater. Eng. Perform., 21, No. 7, 1337–1345 (2012).CrossRef Z. G. Su, X. X. Lv, J. An, et al., “Role of RE element Nd on boronizing kinetics of steels,” J. Mater. Eng. Perform., 21, No. 7, 1337–1345 (2012).CrossRef
24.
Zurück zum Zitat Y. Kayali, Y. Yalçin, and S. Taktak, “Adhesion and wear properties of boro-tempered ductile iron,” Mater. Design, 32, Nos. 8–9, 295–303 (2011). Y. Kayali, Y. Yalçin, and S. Taktak, “Adhesion and wear properties of boro-tempered ductile iron,” Mater. Design, 32, Nos. 8–9, 295–303 (2011).
Metadaten
Titel
Properties and Growth Kinetics of the Boride Layer of a Boriding-Strengthened Fe-Based Powder Metallurgical Material
verfasst von
H. M. Fang
G. S. Zhang
L. S. Xia
Publikationsdatum
27.04.2021
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2021
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00261-7

Weitere Artikel der Ausgabe 1/2021

Strength of Materials 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.