Skip to main content
Erschienen in: Physics of Metals and Metallography 13/2019

01.12.2019

Properties of Porous Ti–26Nb–6Mo–1.5Sn Alloy Produced via Powder Metallurgy for Biomedical Applications

verfasst von: G. Dercz, I. Matuła, J. Maszybrocka

Erschienen in: Physics of Metals and Metallography | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of the present study was to assess the possibility of producing porous Ti–26Nb–6Mo–1.5Sn (at %) alloy using combined mechanical alloying and sintering for potential biomedical application. The use of high energy ball milling method was helpful for initial synthesis of initial elements and for obtaining a powder with particulates of different grain size, which exerts an effect on the presence and different size of pores in the alloy. X-ray diffraction results confirmed the formation of the α nanocrystalline phase and the partially phase transformation from α phase to nanocrystalline β phase during high-energy ball milling process. During the sintering process of green compacts the phase transformation to the β phase and slightly change of the lattice parameters depending on the milling time are observed. The material was also tested by the nanointedation and tribological tests, the latter being considered as a first look at the mechanical properties of the material obtained by mechanical alloying. The samples—after sintering powder mixture previously milled for 40 h—exhibit the lowest reduced elastic modulus among the studied alloys. In the case of sliding tests in Ringer’s solution, the alloy specimens exhibited a surface deformation with some visible grooves, which indicates a greater fraction of abrasive wear component during the sliding test in Ringer solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. He and M. Hagiwara, “Bimodal structured Ti-base alloy with large elasticity and low Young’s modulus,” Mater. Sci. Eng., C 25, 290–295 (2005).CrossRef G. He and M. Hagiwara, “Bimodal structured Ti-base alloy with large elasticity and low Young’s modulus,” Mater. Sci. Eng., C 25, 290–295 (2005).CrossRef
2.
Zurück zum Zitat J. I. Kim and H. Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, “Shape memory characteristics of Ti–22Nb–(2–8)Zr (at %) biomedical alloys,” Mater. Sci. Eng., A 403, 334–339 (2005).CrossRef J. I. Kim and H. Y. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, “Shape memory characteristics of Ti–22Nb–(2–8)Zr (at %) biomedical alloys,” Mater. Sci. Eng., A 403, 334–339 (2005).CrossRef
3.
Zurück zum Zitat D. C. Zhang, J. G. Lin, W. J. Jiang, M. Ma, and Z. G. Peng, “Shape memory and superelastic behavior of Ti–7.5Nb–4Mo–1Sn alloy,” Mater. Des. 32, 4614–4617 (2011).CrossRef D. C. Zhang, J. G. Lin, W. J. Jiang, M. Ma, and Z. G. Peng, “Shape memory and superelastic behavior of Ti–7.5Nb–4Mo–1Sn alloy,” Mater. Des. 32, 4614–4617 (2011).CrossRef
4.
Zurück zum Zitat T. Maeshima, S. Ushimaru, K. Yamauchi, and M. Nishida, “Effect of heat treatment on shape memory effect and superelasticity in Ti–Mo–Sn Alloys,” Mater. Sci. Eng., A 438–440, 844–847 (2006).CrossRef T. Maeshima, S. Ushimaru, K. Yamauchi, and M. Nishida, “Effect of heat treatment on shape memory effect and superelasticity in Ti–Mo–Sn Alloys,” Mater. Sci. Eng., A 438–440, 844–847 (2006).CrossRef
5.
Zurück zum Zitat E. Eisenbarth, D. Velten, M. Muller, and J. Breme, “Biocompatibility of beta-stabilizing elements of titanium alloys,” Biomaterials 25, 5705–5713 (2004).CrossRef E. Eisenbarth, D. Velten, M. Muller, and J. Breme, “Biocompatibility of beta-stabilizing elements of titanium alloys,” Biomaterials 25, 5705–5713 (2004).CrossRef
6.
Zurück zum Zitat W. F. Ho, S. C. Wu, S. K. Hsu, Y. C. Li, and H. C. Hsu, “Effects of molybdenum content on the structure and mechanical properties of as-cast Ti–10Zr-based alloys for biomedical applications,” Mater. Sci. Eng., C 32, 517–522 (2012).CrossRef W. F. Ho, S. C. Wu, S. K. Hsu, Y. C. Li, and H. C. Hsu, “Effects of molybdenum content on the structure and mechanical properties of as-cast Ti–10Zr-based alloys for biomedical applications,” Mater. Sci. Eng., C 32, 517–522 (2012).CrossRef
7.
Zurück zum Zitat Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, “New developments of Ti-based alloys for biomedical applications,” Materials 7, 1709–1800 (2014).CrossRef Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, “New developments of Ti-based alloys for biomedical applications,” Materials 7, 1709–1800 (2014).CrossRef
8.
Zurück zum Zitat A. Biesiekierski, J. Wang, M. A. Gepreel, and C. Wen, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012).CrossRef A. Biesiekierski, J. Wang, M. A. Gepreel, and C. Wen, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012).CrossRef
9.
Zurück zum Zitat M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behav. Biomed. Mater. 1 (1), 30–42 (2008).CrossRef M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” J. Mech. Behav. Biomed. Mater. 1 (1), 30–42 (2008).CrossRef
10.
Zurück zum Zitat C. Caparros, M. Ortiz-Hernandez, M. Molmeneu, M. Punset, J. A. Calero, C. Aparicio, M. Fernandez-Fairen, R. Perez, and F. J. Gil, “Bioactive macroporous titanium implants highly interconnected,” J. Mater. Sci. Mater. Med. 27 (10), 151 (2016).CrossRef C. Caparros, M. Ortiz-Hernandez, M. Molmeneu, M. Punset, J. A. Calero, C. Aparicio, M. Fernandez-Fairen, R. Perez, and F. J. Gil, “Bioactive macroporous titanium implants highly interconnected,” J. Mater. Sci. Mater. Med. 27 (10), 151 (2016).CrossRef
11.
Zurück zum Zitat S. Kujala, J. Ryhanen, A. Danilov, and J. Tuukkanen, “Effect of Porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute,” Biomaterials 24 (25), 4691–4697 (2003).CrossRef S. Kujala, J. Ryhanen, A. Danilov, and J. Tuukkanen, “Effect of Porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute,” Biomaterials 24 (25), 4691–4697 (2003).CrossRef
12.
Zurück zum Zitat M. Karolus and J. Panek, “Nanostructured Ni–Ti alloys obtained by mechanical synthesis and heat treatment,” J. Alloys Compd. 658, 709–715 (2016).CrossRef M. Karolus and J. Panek, “Nanostructured Ni–Ti alloys obtained by mechanical synthesis and heat treatment,” J. Alloys Compd. 658, 709–715 (2016).CrossRef
13.
Zurück zum Zitat R. B. Schwarz and C. C. Koch, “Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics,” Appl. Phys. Lett. 49 (3), 146–148 (1986).CrossRef R. B. Schwarz and C. C. Koch, “Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics,” Appl. Phys. Lett. 49 (3), 146–148 (1986).CrossRef
14.
Zurück zum Zitat G. Dercz, I. Matula, M. Zubko, A. Kazek-Kesik, J. Maszybrocka, W. Simka, J. Dercz, P. Swiec, I. Jendrzejewska, “Synthesis of porous Ti–50Ta alloy by powder metallurgy,” Mater. Charact. 142, 124–136 (2018).CrossRef G. Dercz, I. Matula, M. Zubko, A. Kazek-Kesik, J. Maszybrocka, W. Simka, J. Dercz, P. Swiec, I. Jendrzejewska, “Synthesis of porous Ti–50Ta alloy by powder metallurgy,” Mater. Charact. 142, 124–136 (2018).CrossRef
15.
Zurück zum Zitat G. Dercz and I. Matula, “Effect of ball milling on the properties of the porous Ti–26Nb alloy for biomedical applications,” Mater. Tehnol. 51, 795–803 (2017).CrossRef G. Dercz and I. Matula, “Effect of ball milling on the properties of the porous Ti–26Nb alloy for biomedical applications,” Mater. Tehnol. 51, 795–803 (2017).CrossRef
16.
Zurück zum Zitat Y. Torres, J. J. Pavon, and I. Nieto, J. A. Rodriguez, “Conventional powder metallurgy process and characterization of porous titanium for biomedical applications,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 42, 891–900 (2011). Y. Torres, J. J. Pavon, and I. Nieto, J. A. Rodriguez, “Conventional powder metallurgy process and characterization of porous titanium for biomedical applications,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 42, 891–900 (2011).
17.
Zurück zum Zitat G. Dercz, I. Matula, M. Zubko, and J. Dercz, “Phase composition and microstructure of new Ti–Ta–Nb–Zr biomedical alloys prepared by mechanical alloying method,” Powder Diffr. 32 (Suppl. 1), S186–S192 (2017).CrossRef G. Dercz, I. Matula, M. Zubko, and J. Dercz, “Phase composition and microstructure of new Ti–Ta–Nb–Zr biomedical alloys prepared by mechanical alloying method,” Powder Diffr. 32 (Suppl. 1), S186–S192 (2017).CrossRef
18.
Zurück zum Zitat D. B. Wiles and R. A. Young, “A New Computer Program for Rietveld Analysis of X-Ray Powder Diffraction Patterns,” J. Appl. Crystallogr. 14, 149–151 (1981).CrossRef D. B. Wiles and R. A. Young, “A New Computer Program for Rietveld Analysis of X-Ray Powder Diffraction Patterns,” J. Appl. Crystallogr. 14, 149–151 (1981).CrossRef
19.
Zurück zum Zitat R. J. Hill and C. J. Howard, “IUCr, quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr. 20, 467–474 (1987).CrossRef R. J. Hill and C. J. Howard, “IUCr, quantitative phase analysis from neutron powder diffraction data using the Rietveld method,” J. Appl. Crystallogr. 20, 467–474 (1987).CrossRef
20.
Zurück zum Zitat G. Dercz, D. Oleszak, K. Prusik, and L. Pajak, “Rietveld-based quantitative analysis of multiphase powders with nanocrystalline NiAl and FeAl phases,” Rev.Adv. Mater. Sci. 18, 764–768 (2008). G. Dercz, D. Oleszak, K. Prusik, and L. Pajak, “Rietveld-based quantitative analysis of multiphase powders with nanocrystalline NiAl and FeAl phases,” Rev.Adv. Mater. Sci. 18, 764–768 (2008).
21.
Zurück zum Zitat G. Williamson and W. Hall, “X-ray line broadening from filed aluminium and wolfram,” Acta Metall. 1 (1), 22–31 (1953).CrossRef G. Williamson and W. Hall, “X-ray line broadening from filed aluminium and wolfram,” Acta Metall. 1 (1), 22–31 (1953).CrossRef
22.
Zurück zum Zitat G. Dercz, I. Matula, M. Zubko, and A. Liberska, “Structure characterization of biomedical Ti–Mo–Sn alloy prepared by mechanical alloying method,” Acta Phys. Pol. A 130, 1029–1032 (2016).CrossRef G. Dercz, I. Matula, M. Zubko, and A. Liberska, “Structure characterization of biomedical Ti–Mo–Sn alloy prepared by mechanical alloying method,” Acta Phys. Pol. A 130, 1029–1032 (2016).CrossRef
23.
Zurück zum Zitat C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci. 46 (1–2), 1–184 (2001).CrossRef C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci. 46 (1–2), 1–184 (2001).CrossRef
24.
Zurück zum Zitat V. Uvarov and I. Popov, “Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials,” Mater. Charact. 58, 883–891 (2007).CrossRef V. Uvarov and I. Popov, “Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials,” Mater. Charact. 58, 883–891 (2007).CrossRef
25.
Zurück zum Zitat C. Salvo, C. Aguilar, R. Cardoso-Gil, A. Medina, L. Bejar, and R. V. Mangalaraja, “Study on the microstructural evolution of Ti-niobium based alloy obtained by high-energy ball milling,” J. Alloys Compd. 720, 254–263 (2017).CrossRef C. Salvo, C. Aguilar, R. Cardoso-Gil, A. Medina, L. Bejar, and R. V. Mangalaraja, “Study on the microstructural evolution of Ti-niobium based alloy obtained by high-energy ball milling,” J. Alloys Compd. 720, 254–263 (2017).CrossRef
26.
Zurück zum Zitat G. Dercz, L. Pajak, and B. Formanek, “Dispersion analysis of NiAl–TiC–Al2O3 composite powder ground in a high-energy attritorial mill,” J. Mater. Process. Technol. 175, 334–337 (2006).CrossRef G. Dercz, L. Pajak, and B. Formanek, “Dispersion analysis of NiAl–TiC–Al2O3 composite powder ground in a high-energy attritorial mill,” J. Mater. Process. Technol. 175, 334–337 (2006).CrossRef
27.
Zurück zum Zitat C. Aguilar, P. Guzman, S. Lascano, C. Parra, L. Bejar, A. Medina, D. Guzman, “Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying,” J. Alloys Compd. 670, 346–355 (2016).CrossRef C. Aguilar, P. Guzman, S. Lascano, C. Parra, L. Bejar, A. Medina, D. Guzman, “Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying,” J. Alloys Compd. 670, 346–355 (2016).CrossRef
28.
Zurück zum Zitat G. Dercz, K. Prusik, L. Pajak, T. Goryczka, B. Formanek, “X-ray studies on NiAl–Cr3C2–Al2O3 composite powder with nanocrystalline NiAl phase,” J. Alloys Compd. 423, 112–115 (2006).CrossRef G. Dercz, K. Prusik, L. Pajak, T. Goryczka, B. Formanek, “X-ray studies on NiAl–Cr3C2–Al2O3 composite powder with nanocrystalline NiAl phase,” J. Alloys Compd. 423, 112–115 (2006).CrossRef
29.
Zurück zum Zitat G. Dercz, B. Formanek, K. Prusik, and L. Pajak, “Microstructure of Ni(Cr)–TiC–Cr3C2–Cr7C3 composite powder,” J. Mater. Process. Technol. 162–163, 15–19 (2005).CrossRef G. Dercz, B. Formanek, K. Prusik, and L. Pajak, “Microstructure of Ni(Cr)–TiC–Cr3C2–Cr7C3 composite powder,” J. Mater. Process. Technol. 162–163, 15–19 (2005).CrossRef
30.
Zurück zum Zitat L. M. R. de Vasconcellos, D. O. Leite, F. N. de Oliveira, Y. R. Carvalho, and C. A. A. Cairo, “Evaluation of bone ingrowth into porous titanium implant: Histomorphometric analysis in rabbits,” Braz. Oral Res. 24, 399–405 (2010).CrossRef L. M. R. de Vasconcellos, D. O. Leite, F. N. de Oliveira, Y. R. Carvalho, and C. A. A. Cairo, “Evaluation of bone ingrowth into porous titanium implant: Histomorphometric analysis in rabbits,” Braz. Oral Res. 24, 399–405 (2010).CrossRef
31.
Zurück zum Zitat A. I. Itälä, H. O. Ylanen, C. Ekholm, K. H. Karlsson, and H. T. Aro, “Pore diameter of more than 100 µm is not requisite for bone ingrowth in rabbits,” J. Biomed. Mater. Res. 58, 679–683 (2001).CrossRef A. I. Itälä, H. O. Ylanen, C. Ekholm, K. H. Karlsson, and H. T. Aro, “Pore diameter of more than 100 µm is not requisite for bone ingrowth in rabbits,” J. Biomed. Mater. Res. 58, 679–683 (2001).CrossRef
32.
Zurück zum Zitat Y. V. Milman, A. A. Golubenko, and S. N. Dub, “Indentation size effect in nanohardness,” Acta Mater. 59, 7480–7487 (2011).CrossRef Y. V. Milman, A. A. Golubenko, and S. N. Dub, “Indentation size effect in nanohardness,” Acta Mater. 59, 7480–7487 (2011).CrossRef
33.
Zurück zum Zitat I. Manika and J. Maniks, “Size effects in micro- and nanoscale indentation,” Acta Mater. 54, 2049–2056 (2006).CrossRef I. Manika and J. Maniks, “Size effects in micro- and nanoscale indentation,” Acta Mater. 54, 2049–2056 (2006).CrossRef
34.
Zurück zum Zitat M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants—A review,” Prog. Mater. Sci 54, 397–425 (2009).CrossRef M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants—A review,” Prog. Mater. Sci 54, 397–425 (2009).CrossRef
35.
Zurück zum Zitat W. Waldhauser, J. M. Lackner, M. Kot, and B. Major, “Dry and ringer solution lubricated tribology of thin osseoconductive metal oxides and diamond-like carbon films,” Arch. Metall. Mater. 60, 2139–2144 (2015).CrossRef W. Waldhauser, J. M. Lackner, M. Kot, and B. Major, “Dry and ringer solution lubricated tribology of thin osseoconductive metal oxides and diamond-like carbon films,” Arch. Metall. Mater. 60, 2139–2144 (2015).CrossRef
36.
Zurück zum Zitat X. Li and U. Olofsson, “A Study on friction and wear reduction due to porosity in powder metallurgic gear materials,” Tribol. Int. 110, 86–95 (2017).CrossRef X. Li and U. Olofsson, “A Study on friction and wear reduction due to porosity in powder metallurgic gear materials,” Tribol. Int. 110, 86–95 (2017).CrossRef
37.
Zurück zum Zitat Y.-S. Lee, M. Niinomi, M. Nakai, K. Narita, and K. Cho, “Differences in wear behaviors at sliding contacts for β-type and (α + β)-type titanium alloys in Ringer’s solution and air,” Mater. Trans. 56, 317–326 (2015).CrossRef Y.-S. Lee, M. Niinomi, M. Nakai, K. Narita, and K. Cho, “Differences in wear behaviors at sliding contacts for β-type and (α + β)-type titanium alloys in Ringer’s solution and air,” Mater. Trans. 56, 317–326 (2015).CrossRef
Metadaten
Titel
Properties of Porous Ti–26Nb–6Mo–1.5Sn Alloy Produced via Powder Metallurgy for Biomedical Applications
verfasst von
G. Dercz
I. Matuła
J. Maszybrocka
Publikationsdatum
01.12.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 13/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X19130040

Weitere Artikel der Ausgabe 13/2019

Physics of Metals and Metallography 13/2019 Zur Ausgabe