Skip to main content

2020 | OriginalPaper | Buchkapitel

Qualitative Multi-objective Reachability for Ordered Branching MDPs

verfasst von : Kousha Etessami, Emanuel Martinov

Erschienen in: Reachability Problems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study qualitative multi-objective reachability problems for Ordered Branching Markov Decision Processes (OBMDPs), or equivalently context-free MDPs, building on prior results for single-target reachability on Branching Markov Decision Processes (BMDPs).
We provide two separate algorithms for “almost-sure” and “limit-sure” multi-target reachability for OBMDPs. Specifically, given an OBMDP, \(\mathcal {A}\), given a starting non-terminal, and given a set of target non-terminals K of size \(k = |K|\), our first algorithm decides whether the supremum probability, of generating a tree that contains every target non-terminal in set K, is 1. Our second algorithm decides whether there is a strategy for the player to almost-surely (with probability 1) generate a tree that contains every target non-terminal in set K. The two separate algorithms are needed: we give examples showing that indeed “almost-sure” \(\not =\) “limit-sure” for multi-target reachability in OBMDPs. Both algorithms run in time \(2^{O(k)} \cdot |\mathcal {A}|^{O(1)}\), where \(|\mathcal {A}|\) is the bit encoding length of \(\mathcal {A}\). Hence they run in P-time when k is fixed, and are fixed-parameter tractable with respect to k. Moreover, we show that the qualitative almost-sure (and limit-sure) multi-target reachability decision problem is in general NP-hard, when k is not fixed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The notion of general “strategy” employed for BMDPs in [8] is somewhat different than what we define in this paper for OBMDPs: it allows the controller to not only base its choice at a tree node on the ancestor chain of that node, but on the entire tree up to that “generation”. This is needed for BMDPs because there is no ordering available on “siblings” in the tree generated by a BMDP. However, a careful look shows that the results of [8] imply that, for OBMDPs, for single-target reachability, almost-sure and limit-sure reachability also coincide under the notion of “strategy” we have defined in this paper, where choices are based only on the “ancestor history” (with ordering information) of each node in the ordered tree. In particular the key"queen/workers" strategy employed for almost-sure (=limit-sure) reachability in [8] can be mimicked using the ordering with respect to siblings that is available in ancestor histories of OBMDPs.
 
2
This strategy is, however, necessarily not “static”, meaning it must actually use the ancestor history: the action distribution cannot be defined solely based on which non-terminal is being expanded.
 
3
Equivalent w.r.t. all (multi-objective) reachability objectives we consider.
 
4
We assume, without loss of generality, that for \(0 \le t < t' \le m_i\), \(T_{j_t} \ne T_{j_{t'}}\).
 
5
Here ‘l’, ‘r’, and ‘u’, stand for ‘left’, ‘right’, and ‘unique’ child, respectively.
 
6
To avoid confusion, note that subderivation and subplay have very different meanings. Saying derivation X is a “subderivation” of \(X'\), means that in a sense X is a “prefix” of \(X'\), as an ordered tree. Saying play X is a subplay of play \(X'\), means X is a “suffix” of \(X'\), more specifically X is a subtree rooted at a specific node of \(X'\).
 
7
The fact that these statements are equivalent is easy to prove; see the full version.
 
8
Technically, as given, this OBMDP in not in simple normal form; but this can easily be rectified by using an auxiliary branching non-terminal, Q, adding the rule \(Q \xrightarrow {1} M \; A\) and changing the rule \(M \xrightarrow {a} M \; A\) to \(M \xrightarrow {a} Q\).
 
9
In [4], maximal end-components are referred to as closed components.
 
10
Note that this differs crucially from the situation in the limit-sure algorithm, where the other spawned children of these branching nodes in C were only able to reach a non-empty subset \(P_C\) of \(K'\) with a positive probability (bounded away from zero), not necessarily the entire set \(K'\).
 
11
A helpful observation here is this: in the limit-sure algorithm we were identifying MECs, where the choice of when to “exit” the MEC is entirely controlled by the player. In the almost-sure algorithm we instead identify SCCs. Even though there may also be purely probabilistic (i.e., not controlled) opportunities of “exiting” such a “good” SCC, C (specifically, an SCC C that is identified and used in step II.8.), due to the way the set \(F_{K'} = X - S_{K'}\) is constructed (and due to properties of its associated witness strategy \(\sigma _{K'}^*\), which is described in the full proof), we can show that even when C is “exited” we still stay inside the set \(F_{K'}\), and eventually hit a SCC, \(C'\), which can only be “exited” probabilistically to \(D_{K'}\), and where, moreover, for each target in \(K'\) there is a branching (Q-Form) node in the SCC, \(C'\), whose “extra” child can hit that target with positive probability (bounded away from zero).
 
Literatur
1.
Zurück zum Zitat Bozic, I., et al.: Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013) CrossRef Bozic, I., et al.: Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013) CrossRef
2.
Zurück zum Zitat Chatterjee, K., Henzinger, M.: Efficient and dynamic algorithms for alternating Büchi games and maximal end-component decomposition. J. ACM 61(3), 15:1–15:40 (2014)MATHCrossRef Chatterjee, K., Henzinger, M.: Efficient and dynamic algorithms for alternating Büchi games and maximal end-component decomposition. J. ACM 61(3), 15:1–15:40 (2014)MATHCrossRef
4.
Zurück zum Zitat Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events. IEEE Trans. Autom. Control 43(10), 1399–1418 (1998)MathSciNetMATHCrossRef Courcoubetis, C., Yannakakis, M.: Markov decision processes and regular events. IEEE Trans. Autom. Control 43(10), 1399–1418 (1998)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)MATHCrossRef Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)MATHCrossRef
6.
Zurück zum Zitat Etessami, K., Stewart, A., Yannakakis, M.: A Polynomial-time algorithm for computing extinction probabilities of multi-type branching processes. SIAM J. Computing 46(5), 1515–1553 (2017). (Incorporates part of the work of a conference paper in STOC 2012.)MathSciNetMATHCrossRef Etessami, K., Stewart, A., Yannakakis, M.: A Polynomial-time algorithm for computing extinction probabilities of multi-type branching processes. SIAM J. Computing 46(5), 1515–1553 (2017). (Incorporates part of the work of a conference paper in STOC 2012.)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Etessami, K., Stewart, A., Yannakakis, M.: Polynomial time algorithms for branching Markov decision processes and probabilistic min(max) polynomial Bellman equations. Math. Oper. Res. 45(1), 34–62 (2020). (Conference version in ICALP’12.)MathSciNetMATHCrossRef Etessami, K., Stewart, A., Yannakakis, M.: Polynomial time algorithms for branching Markov decision processes and probabilistic min(max) polynomial Bellman equations. Math. Oper. Res. 45(1), 34–62 (2020). (Conference version in ICALP’12.)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Etessami, K., Stewart, A., Yannakakis, M.: Greatest fixed points of probabilistic min/max polynomial equations, and reachability for branching Markov decision processes. Inf. Comput. 261(2), 355–382 (2018). (Conference version in ICALP 2015.)MathSciNetMATHCrossRef Etessami, K., Stewart, A., Yannakakis, M.: Greatest fixed points of probabilistic min/max polynomial equations, and reachability for branching Markov decision processes. Inf. Comput. 261(2), 355–382 (2018). (Conference version in ICALP 2015.)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Etessami, K., Martinov, E., Stewart, A., Yannakakis, M.: Reachability for branching concurrent stochastic games. In: Proceedings of the 46th International Colloquium on Automata, Languages and Programming (ICALP) (2019). (All references are to the full preprint arXiv:1806.03907.) Etessami, K., Martinov, E., Stewart, A., Yannakakis, M.: Reachability for branching concurrent stochastic games. In: Proceedings of the 46th International Colloquium on Automata, Languages and Programming (ICALP) (2019). (All references are to the full preprint arXiv:​1806.​03907.)
10.
Zurück zum Zitat Etessami, K., Martinov, E.: Qualitative multi-objective reachability for ordered branching MDPs. Full preprint arXiv:2008.10591 (2020) Etessami, K., Martinov, E.: Qualitative multi-objective reachability for ordered branching MDPs. Full preprint arXiv:​2008.​10591 (2020)
11.
Zurück zum Zitat Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. LMCS 4(4), (2008) Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. LMCS 4(4), (2008)
12.
Zurück zum Zitat Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. LMCS 4(4), (2008) Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. LMCS 4(4), (2008)
13.
Zurück zum Zitat Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive stochastic games. J. ACM 62(2), 1–69 (2015)MathSciNetMATHCrossRef Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive stochastic games. J. ACM 62(2), 1–69 (2015)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations. J. ACM 56(1), 1–66 (2009)MathSciNetMATHCrossRef Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations. J. ACM 56(1), 1–66 (2009)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Haccou, P., Jagers, P., Vatutin, V.A.: Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge University Press, Cambridge (2005)MATHCrossRef Haccou, P., Jagers, P., Vatutin, V.A.: Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge University Press, Cambridge (2005)MATHCrossRef
17.
Zurück zum Zitat Michalewski, H., Mio, M.: On the problem of computing the probability of regular sets of trees. In: Proceedings of FSTTCS 2015, pp. 489–502 (2015) Michalewski, H., Mio, M.: On the problem of computing the probability of regular sets of trees. In: Proceedings of FSTTCS 2015, pp. 489–502 (2015)
18.
Zurück zum Zitat Przybyłko, M., Skrzypczak, M.: On the complexity of branching games with regular conditions. In: Proceedings of MFCS 2016, LIPICS, vol. 78 (2016) Przybyłko, M., Skrzypczak, M.: On the complexity of branching games with regular conditions. In: Proceedings of MFCS 2016, LIPICS, vol. 78 (2016)
Metadaten
Titel
Qualitative Multi-objective Reachability for Ordered Branching MDPs
verfasst von
Kousha Etessami
Emanuel Martinov
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-61739-4_5