Skip to main content

2017 | OriginalPaper | Buchkapitel

Quantifying the Uncertainty in Model Parameters Using Gaussian Process-Based Markov Chain Monte Carlo: An Application to Cardiac Electrophysiological Models

verfasst von : Jwala Dhamala, John L. Sapp, Milan Horacek, Linwei Wang

Erschienen in: Information Processing in Medical Imaging

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Estimation of patient-specific model parameters is important for personalized modeling, although sparse and noisy clinical data can introduce significant uncertainty in the estimated parameter values. This importance source of uncertainty, if left unquantified, will lead to unknown variability in model outputs that hinder their reliable adoptions. Probabilistic estimation model parameters, however, remains an unresolved challenge because standard Markov Chain Monte Carlo sampling requires repeated model simulations that are computationally infeasible. A common solution is to replace the simulation model with a computationally-efficient surrogate for a faster sampling. However, by sampling from an approximation of the exact posterior probability density function (pdf) of the parameters, the efficiency is gained at the expense of sampling accuracy. In this paper, we address this issue by integrating surrogate modeling into Metropolis Hasting (MH) sampling of the exact posterior pdfs to improve its acceptance rate. It is done by first quickly constructing a Gaussian process (GP) surrogate of the exact posterior pdfs using deterministic optimization. This efficient surrogate is then used to modify commonly-used proposal distributions in MH sampling such that only proposals accepted by the surrogate will be tested by the exact posterior pdf for acceptance/rejection, reducing unnecessary model simulations at unlikely candidates. Synthetic and real-data experiments using the presented method show a significant gain in computational efficiency without compromising the accuracy. In addition, insights into the non-identifiability and heterogeneity of tissue properties can be gained from the obtained posterior distributions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adrieu, C., Freitas, N., Doucet, A., Jordan, M.: An introduction to Markov chain Monte Carlo for machine learning. Mach. Learn. 50, 5–43 (2003)CrossRef Adrieu, C., Freitas, N., Doucet, A., Jordan, M.: An introduction to Markov chain Monte Carlo for machine learning. Mach. Learn. 50, 5–43 (2003)CrossRef
2.
Zurück zum Zitat Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7(3), 293–301 (1996)CrossRef Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7(3), 293–301 (1996)CrossRef
3.
Zurück zum Zitat Christen, J.A., Fox, C.: Markov chain Monte Carlo using an approximation. J. Comput. Graph. Stat. 14(4), 795–810 (2005)MathSciNetCrossRef Christen, J.A., Fox, C.: Markov chain Monte Carlo using an approximation. J. Comput. Graph. Stat. 14(4), 795–810 (2005)MathSciNetCrossRef
4.
Zurück zum Zitat Dhamala, J., Sapp, J.L., Horacek, M., Wang, L.: Spatially-adaptive multi-scale optimization for local parameter estimation: application in cardiac electrophysiological models. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 282–290. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_33 CrossRef Dhamala, J., Sapp, J.L., Horacek, M., Wang, L.: Spatially-adaptive multi-scale optimization for local parameter estimation: application in cardiac electrophysiological models. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 282–290. Springer, Cham (2016). doi:10.​1007/​978-3-319-46726-9_​33 CrossRef
5.
Zurück zum Zitat Konukoglu, E., et al.: Efficient probabilistic model personalization integrating uncertainty on data and parameters: application to eikonal-diffusion models in cardiac electrophysiology. Prog. Biophys. Mol. Biol. 107(1), 134–146 (2011)CrossRef Konukoglu, E., et al.: Efficient probabilistic model personalization integrating uncertainty on data and parameters: application to eikonal-diffusion models in cardiac electrophysiology. Prog. Biophys. Mol. Biol. 107(1), 134–146 (2011)CrossRef
6.
Zurück zum Zitat Lê, M., Delingette, H., Kalpathy-Cramer, J., Gerstner, E.R., Batchelor, T., Unkelbach, J., Ayache, N.: Bayesian personalization of brain tumor growth model. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 424–432. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_51 CrossRef Lê, M., Delingette, H., Kalpathy-Cramer, J., Gerstner, E.R., Batchelor, T., Unkelbach, J., Ayache, N.: Bayesian personalization of brain tumor growth model. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 424–432. Springer, Cham (2015). doi:10.​1007/​978-3-319-24571-3_​51 CrossRef
7.
Zurück zum Zitat Plonsey, R.: Bioelectric Phenomena. Wiley Online Library, Hoboken (1969) Plonsey, R.: Bioelectric Phenomena. Wiley Online Library, Hoboken (1969)
8.
9.
Zurück zum Zitat Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)MATH Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)MATH
10.
Zurück zum Zitat Sapp, J., Dawoud, F., Clements, J., Horáček, M.: Inverse solution mapping of epicardial potentials: quantitative comparison to epicardial contact mapping. Circ. Arrhythmia Electrophysiol. 5(5), 1001–1009 (2012)CrossRef Sapp, J., Dawoud, F., Clements, J., Horáček, M.: Inverse solution mapping of epicardial potentials: quantitative comparison to epicardial contact mapping. Circ. Arrhythmia Electrophysiol. 5(5), 1001–1009 (2012)CrossRef
11.
Zurück zum Zitat Schiavazzi, D., Arbia, G., Baker, C., et al.: Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int. J. Numer. Methods Biomed. Eng. (2015) Schiavazzi, D., Arbia, G., Baker, C., et al.: Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int. J. Numer. Methods Biomed. Eng. (2015)
12.
Zurück zum Zitat Sermesant, M., Chabiniok, R., Chinchapatnam, P., et al.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)CrossRef Sermesant, M., Chabiniok, R., Chinchapatnam, P., et al.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)CrossRef
13.
Zurück zum Zitat Siekmann, I., Sneyd, J., Crampin, E.J.: MCMC can detect nonidentifiable models. Biophys. J. 103(11), 2275–2286 (2012)CrossRef Siekmann, I., Sneyd, J., Crampin, E.J.: MCMC can detect nonidentifiable models. Biophys. J. 103(11), 2275–2286 (2012)CrossRef
14.
Zurück zum Zitat Wang, L., Zhang, H., Wong, K.C., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 57(2), 296–315 (2010)CrossRef Wang, L., Zhang, H., Wong, K.C., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 57(2), 296–315 (2010)CrossRef
15.
Zurück zum Zitat Wong, K.C.L., Relan, J., Wang, L., Sermesant, M., Delingette, H., Ayache, N., Shi, P.: Strain-based regional nonlinear cardiac material properties estimation from medical images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 617–624. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33415-3_76 CrossRef Wong, K.C.L., Relan, J., Wang, L., Sermesant, M., Delingette, H., Ayache, N., Shi, P.: Strain-based regional nonlinear cardiac material properties estimation from medical images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 617–624. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-33415-3_​76 CrossRef
Metadaten
Titel
Quantifying the Uncertainty in Model Parameters Using Gaussian Process-Based Markov Chain Monte Carlo: An Application to Cardiac Electrophysiological Models
verfasst von
Jwala Dhamala
John L. Sapp
Milan Horacek
Linwei Wang
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-59050-9_18