Skip to main content
Erschienen in: Fire Technology 2/2015

01.03.2015

Quantitative Testing of Fire Scenario Hypotheses: A Bayesian Inference Approach

verfasst von: Kristopher J. Overholt, Ofodike A. Ezekoye

Erschienen in: Fire Technology | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fire models are routinely used to evaluate life safety aspects of building design projects and are being used more often in fire and arson investigations as well as reconstructions of firefighter line-of-duty deaths and injuries. A fire within a compartment effectively leaves behind a record of fire activity and history (i.e., fire signatures). Fire and arson investigators can utilize these fire signatures in the determination of cause and origin during fire reconstruction exercises. Researchers conducting fire experiments can utilize this record of fire activity to better understand the underlying physics. In all of these applications, the heat release rate and location of a fire are important parameters that govern the evolution of thermal conditions within a fire compartment. These input parameters can be a large source of uncertainty in fire models, especially in scenarios in which experimental data or detailed information on fire behavior are not available. A methodology is sought to estimate the amount of certainty (or degree of belief) in the input parameters for hypothesized scenarios. To address this issue, an inversion framework was applied to scenarios that have relevance in fire scene reconstructions. Rather than using point estimates of input parameters, a statistical inversion framework based on the Bayesian inference approach was used to calculate probability distributions of input parameters. These probability distributions contain uncertainty information about the input parameters and can be propagated through fire models to obtain uncertainty information about predicted quantities of interest. The Bayesian inference approach was applied to various fire problems using different models: empirical correlations, zone models, and computational fluid dynamics fire models. Example applications include the estimation of steady-state fire sizes in a compartment and the location of a fire.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The examples in this paper were adapted from material provided during a PyMC tutorial session at the SciPy 2011 Conference [35]. The material is licensed under the GNU GPL v3.
 
3
The test report gives the height of the compartment as 2.18 m, which is a misprint. The compartment was 2.13 m high.
 
Literatur
1.
Zurück zum Zitat Redsicker DR, O’Connor JJ (1997) Practical fire and arson investigation, 2nd edn. CRC Press, Boca Raton Redsicker DR, O’Connor JJ (1997) Practical fire and arson investigation, 2nd edn. CRC Press, Boca Raton
2.
Zurück zum Zitat Kirk P, DeHaan J (1997) Kirk’s fire investigation. Brady, Upper Saddle River Kirk P, DeHaan J (1997) Kirk’s fire investigation. Brady, Upper Saddle River
3.
Zurück zum Zitat Kruse C (2013) The Bayesian approach to forensic evidence: evaluating, communicating, and distributing responsibility. Soc Stud Sci 43(5):657–680CrossRef Kruse C (2013) The Bayesian approach to forensic evidence: evaluating, communicating, and distributing responsibility. Soc Stud Sci 43(5):657–680CrossRef
4.
Zurück zum Zitat National Fire Protection Association (2011) Guide for fire and explosion investigations. NFPA 921, Quincy National Fire Protection Association (2011) Guide for fire and explosion investigations. NFPA 921, Quincy
5.
Zurück zum Zitat Babrauskas V (2005) Charring rate of wood as a tool for fire investigations. Fire Saf J 40(6):528–554CrossRef Babrauskas V (2005) Charring rate of wood as a tool for fire investigations. Fire Saf J 40(6):528–554CrossRef
6.
Zurück zum Zitat Overholt KJ (2013) Forward and inverse modeling of fire physics towards fire scene reconstructions. Ph.D. dissertation, The University of Texas at Austin Overholt KJ (2013) Forward and inverse modeling of fire physics towards fire scene reconstructions. Ph.D. dissertation, The University of Texas at Austin
7.
Zurück zum Zitat Overholt KJ, Ezekoye OA (2012) Characterizing heat release rates using an inverse fire modeling technique. Fire Technol 48(4):893–909CrossRef Overholt KJ, Ezekoye OA (2012) Characterizing heat release rates using an inverse fire modeling technique. Fire Technol 48(4):893–909CrossRef
8.
Zurück zum Zitat Jahn W, Rein G, Torero JL (2012) Forecasting fire dynamics using inverse computational fluid dynamics and tangent linearisation. Adv Eng Softw 47(1):114–126CrossRef Jahn W, Rein G, Torero JL (2012) Forecasting fire dynamics using inverse computational fluid dynamics and tangent linearisation. Adv Eng Softw 47(1):114–126CrossRef
9.
Zurück zum Zitat Cowlard A, Jahn W, Abecassis-Empis C, Rein G, Torero J (2010) Sensor assisted fire fighting. Fire Technol 46:719–741CrossRef Cowlard A, Jahn W, Abecassis-Empis C, Rein G, Torero J (2010) Sensor assisted fire fighting. Fire Technol 46:719–741CrossRef
10.
Zurück zum Zitat Koo SH, Fraser-Mitchell J, Welch S (2010) Sensor-steered fire simulation. Fire Saf J 45(3):193CrossRef Koo SH, Fraser-Mitchell J, Welch S (2010) Sensor-steered fire simulation. Fire Saf J 45(3):193CrossRef
11.
Zurück zum Zitat Lautenberger C, Rein G, Fernandez-Pello C (2006) The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J 41(3):204–214CrossRef Lautenberger C, Rein G, Fernandez-Pello C (2006) The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J 41(3):204–214CrossRef
12.
Zurück zum Zitat Marquis D, Guillaume E, Camillo A, Rogaume T, Richard F (2013) Existence and uniqueness of solutions of a differential equation system modeling the thermal decomposition of polymer materials. Combust Flame 160:818CrossRef Marquis D, Guillaume E, Camillo A, Rogaume T, Richard F (2013) Existence and uniqueness of solutions of a differential equation system modeling the thermal decomposition of polymer materials. Combust Flame 160:818CrossRef
13.
Zurück zum Zitat Chaos M, Khan M, Krishnamoorthy N, de Ris J, Dorofeev S (2011) Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst 33(2):2599–2606CrossRef Chaos M, Khan M, Krishnamoorthy N, de Ris J, Dorofeev S (2011) Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proc Combust Inst 33(2):2599–2606CrossRef
14.
Zurück zum Zitat Lautenberger C, Fernandez-Pello C (2009) Generalized pyrolysis model for combustible solids. Fire Saf J 44(6):819–839CrossRef Lautenberger C, Fernandez-Pello C (2009) Generalized pyrolysis model for combustible solids. Fire Saf J 44(6):819–839CrossRef
16.
Zurück zum Zitat Rein G, Lautenberger C, Fernandez-Pello AC, Torero JL, Urban DL (2006) Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust and Flame 146(1):95–108CrossRef Rein G, Lautenberger C, Fernandez-Pello AC, Torero JL, Urban DL (2006) Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust and Flame 146(1):95–108CrossRef
17.
Zurück zum Zitat Holladay KL, Sharp JM, Janssens M (2011) Automatic pyrolysis mass loss modeling from thermo-gravimetric analysis data using genetic programming. In: Proceedings of the 13th annual conference companion on Genetic and evolutionary computation, pp 655–662 Holladay KL, Sharp JM, Janssens M (2011) Automatic pyrolysis mass loss modeling from thermo-gravimetric analysis data using genetic programming. In: Proceedings of the 13th annual conference companion on Genetic and evolutionary computation, pp 655–662
18.
Zurück zum Zitat Wang J, Zabaras N (2005) Using Bayesian statistics in the estimation of heat source in radiation. Int J Heat Mass Transf 48(1):15–29CrossRefMATHMathSciNet Wang J, Zabaras N (2005) Using Bayesian statistics in the estimation of heat source in radiation. Int J Heat Mass Transf 48(1):15–29CrossRefMATHMathSciNet
19.
Zurück zum Zitat Miki K, Prudencio E, Cheung S, Terejanu G (2013) Using Bayesian analysis to quantify uncertainties in the \({\rm H} + {\rm O}_2 \rightarrow {\rm OH} + {\rm O}\) reaction. Combust Flame 160(5):861–869CrossRef Miki K, Prudencio E, Cheung S, Terejanu G (2013) Using Bayesian analysis to quantify uncertainties in the \({\rm H} + {\rm O}_2 \rightarrow {\rm OH} + {\rm O}\) reaction. Combust Flame 160(5):861–869CrossRef
20.
Zurück zum Zitat McGrattan K, Toman B (2011) Quantifying the predictive uncertainty of complex numerical models. Metrologia 48:173–180CrossRef McGrattan K, Toman B (2011) Quantifying the predictive uncertainty of complex numerical models. Metrologia 48:173–180CrossRef
21.
Zurück zum Zitat Petrovich WP (1998) A fire investigator’s handbook: technical skills for entering, documenting, and testifying in a fire scene investigation. Charles C Thomas, Springfield Petrovich WP (1998) A fire investigator’s handbook: technical skills for entering, documenting, and testifying in a fire scene investigation. Charles C Thomas, Springfield
22.
Zurück zum Zitat Bayes T, Price R (1763) An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFRS. Philos Trans (1683–1775):370–418 Bayes T, Price R (1763) An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFRS. Philos Trans (1683–1775):370–418
23.
Zurück zum Zitat Gelman A, Carlin J, Stern H, Rubin D (2003) Bayesian data analysis. Chapman & Hall/CRC, Washington, DC Gelman A, Carlin J, Stern H, Rubin D (2003) Bayesian data analysis. Chapman & Hall/CRC, Washington, DC
24.
Zurück zum Zitat Bolstad WM (2010) Understanding computational Bayesian statistics. Wiley, ChichesterMATH Bolstad WM (2010) Understanding computational Bayesian statistics. Wiley, ChichesterMATH
25.
Zurück zum Zitat Andrieu C, de Freitas N, Doucet A, Jordan M (2003) An introduction to MCMC for machine learning. Mach Learn 50(1):5–43CrossRefMATH Andrieu C, de Freitas N, Doucet A, Jordan M (2003) An introduction to MCMC for machine learning. Mach Learn 50(1):5–43CrossRefMATH
26.
Zurück zum Zitat Yuen K (2010) Bayesian methods for structural dynamics and civil engineering. Wiley, New YorkCrossRef Yuen K (2010) Bayesian methods for structural dynamics and civil engineering. Wiley, New YorkCrossRef
27.
Zurück zum Zitat Bal N, Rein G (2013) Relevant model complexity for non-charring polymer pyrolysis. Fire Saf J 61(0):36–44CrossRef Bal N, Rein G (2013) Relevant model complexity for non-charring polymer pyrolysis. Fire Saf J 61(0):36–44CrossRef
28.
Zurück zum Zitat Oliphant TE (2006) A guide to NumPy, vol 1. Trelgol Publishing, Spanish Fork Oliphant TE (2006) A guide to NumPy, vol 1. Trelgol Publishing, Spanish Fork
29.
Zurück zum Zitat Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific tools for Python Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific tools for Python
30.
Zurück zum Zitat Hunter J (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95CrossRef Hunter J (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95CrossRef
31.
Zurück zum Zitat Patil A, Huard D, Fonnesbeck C (2010) PyMC: Bayesian stochastic modelling in Python. J Stat Softw 35(4):1–81 Patil A, Huard D, Fonnesbeck C (2010) PyMC: Bayesian stochastic modelling in Python. J Stat Softw 35(4):1–81
32.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire dynamics simulator, user’s guide. National Institute of Standards and Technology, Gaithersburg and VTT Technical Research Centre of Finland, Espoo, 6th edition, September 2013 McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire dynamics simulator, user’s guide. National Institute of Standards and Technology, Gaithersburg and VTT Technical Research Centre of Finland, Espoo, 6th edition, September 2013
33.
Zurück zum Zitat Peacock RD, Jones WW, Reneke PA, Forney GP (2005) CFAST—Consolidated model of fire growth and smoke transport (version 6): user’s guide. Special Publication 1041, National Institute of Standards and Technology, Gaithersburg, December 2005 Peacock RD, Jones WW, Reneke PA, Forney GP (2005) CFAST—Consolidated model of fire growth and smoke transport (version 6): user’s guide. Special Publication 1041, National Institute of Standards and Technology, Gaithersburg, December 2005
34.
Zurück zum Zitat Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20CrossRef Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20CrossRef
35.
Zurück zum Zitat Fonnesbeck C, Flaxman A (2011) An introduction to Bayesian statistical modeling using PyMC, SciPy 2011 Conference, Austin, Tutorial Session, 11 July 2011 Fonnesbeck C, Flaxman A (2011) An introduction to Bayesian statistical modeling using PyMC, SciPy 2011 Conference, Austin, Tutorial Session, 11 July 2011
36.
Zurück zum Zitat Fleury R (2010) Evaluation of thermal radiation models for fire spread between objects. Master’s thesis, University of Canterbury, Christchurch Fleury R (2010) Evaluation of thermal radiation models for fire spread between objects. Master’s thesis, University of Canterbury, Christchurch
37.
Zurück zum Zitat Drysdale D (2002) An introduction to fire dynamics, 2nd edn. Wiley, New York Drysdale D (2002) An introduction to fire dynamics, 2nd edn. Wiley, New York
38.
Zurück zum Zitat Steckler KD, Quintiere JG, Rinkinen WJ (1982) Flow induced by fire in a compartment. NBSIR 82-2520, National Bureau of Standards, Gaithersburg, September 1982 Steckler KD, Quintiere JG, Rinkinen WJ (1982) Flow induced by fire in a compartment. NBSIR 82-2520, National Bureau of Standards, Gaithersburg, September 1982
Metadaten
Titel
Quantitative Testing of Fire Scenario Hypotheses: A Bayesian Inference Approach
verfasst von
Kristopher J. Overholt
Ofodike A. Ezekoye
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2015
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-013-0384-z

Weitere Artikel der Ausgabe 2/2015

Fire Technology 2/2015 Zur Ausgabe