Skip to main content
Erschienen in: Quantum Information Processing 6/2016

01.06.2016

Quantum speedup of uncoupled multiqubit open system via dynamical decoupling pulses

verfasst von: Ya-Ju Song, Le-Man Kuang, Qing-Shou Tan

Erschienen in: Quantum Information Processing | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a method to accelerate the dynamical evolution of mutltiqubit open system by employing dynamical decoupling pulses (DDPs) when the qubits are initially in W-type states. Here the qubits are independent and coupled to local Lorentzian reservoirs. It is found that this speedup evolution can be achieved in both the weak-coupling regime and the strong-coupling regime. The essential physical mechanism behind the acceleration evolution is explained as a result of the joint action of the non-Markovianity of reservoirs and the excited-state population of qubits. It is shown that both the non-Markovianity and the excited-state population can be controlled by DDPs to realize the quantum speedup.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Yung, M.-H.: Quantum speed limit for perfect state transfer in one dimension. Phys. Rev. A 74, 030303(R) (2006)ADSCrossRef Yung, M.-H.: Quantum speed limit for perfect state transfer in one dimension. Phys. Rev. A 74, 030303(R) (2006)ADSCrossRef
4.
Zurück zum Zitat Lloyd, S.: Ultimate physical limits to computation. Nature (London) 406, 1047 (2000)ADSCrossRef Lloyd, S.: Ultimate physical limits to computation. Nature (London) 406, 1047 (2000)ADSCrossRef
6.
Zurück zum Zitat Obada, A.-S.F., Abo-Kahla, D.A.M., Metwally, N., Abdel-Aty, M.: The quantum computational speed of a single Cooper-pair box. Phys. E 43, 1792 (2011)CrossRef Obada, A.-S.F., Abo-Kahla, D.A.M., Metwally, N., Abdel-Aty, M.: The quantum computational speed of a single Cooper-pair box. Phys. E 43, 1792 (2011)CrossRef
7.
Zurück zum Zitat Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)ADSCrossRef Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)ADSCrossRef
8.
Zurück zum Zitat Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)ADSCrossRef Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)ADSCrossRef
9.
Zurück zum Zitat del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)CrossRef del Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)CrossRef
11.
Zurück zum Zitat Alipour, S., Mehboudi, M., Rezakhani, A.T.: Quantum metrology in open systems: dissipative Cram\(\acute{e}\)r–Rao bound. Phys. Rev. Lett. 112, 120405 (2014)ADSCrossRef Alipour, S., Mehboudi, M., Rezakhani, A.T.: Quantum metrology in open systems: dissipative Cram\(\acute{e}\)r–Rao bound. Phys. Rev. Lett. 112, 120405 (2014)ADSCrossRef
12.
Zurück zum Zitat Demkowicz-Dobrzański, R.: Quantum computation speedup limits from quantum metrological precision bounds. Phys. Rev. A. 91, 062322 (2015)ADSCrossRef Demkowicz-Dobrzański, R.: Quantum computation speedup limits from quantum metrological precision bounds. Phys. Rev. A. 91, 062322 (2015)ADSCrossRef
13.
Zurück zum Zitat Gordon, R.J., Rice, S.A.: Active control of the dynamics of atoms and molecules. Annu. Rev. Phys. Chem. 48, 601 (1997)ADSCrossRef Gordon, R.J., Rice, S.A.: Active control of the dynamics of atoms and molecules. Annu. Rev. Phys. Chem. 48, 601 (1997)ADSCrossRef
14.
Zurück zum Zitat Rabitz, H., de Vivie-Riedle, R., Motzkus, M., Kompa, K.: Whither the future of controlling quantum phenomena? Science 288, 824 (2000)ADSCrossRef Rabitz, H., de Vivie-Riedle, R., Motzkus, M., Kompa, K.: Whither the future of controlling quantum phenomena? Science 288, 824 (2000)ADSCrossRef
15.
Zurück zum Zitat Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001)ADSCrossRef Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001)ADSCrossRef
16.
Zurück zum Zitat Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal quantum evolution. Phys. Rev. Lett. 96, 060503 (2006)ADSCrossRefMATH Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal quantum evolution. Phys. Rev. Lett. 96, 060503 (2006)ADSCrossRefMATH
17.
Zurück zum Zitat Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)ADSCrossRef Caneva, T., Murphy, M., Calarco, T., Fazio, R., Montangero, S., Giovannetti, V., Santoro, G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)ADSCrossRef
18.
Zurück zum Zitat Mukherjee, V., Carlini, A., Mari, A., Caneva, T., Montangero, S., Calarco, T., Fazio, R., Giovannetti, V.: Speeding up and slowing down the relaxation of a qubit by optimal control. Phys. Rev. A 88, 062326 (2013)ADSCrossRef Mukherjee, V., Carlini, A., Mari, A., Caneva, T., Montangero, S., Calarco, T., Fazio, R., Giovannetti, V.: Speeding up and slowing down the relaxation of a qubit by optimal control. Phys. Rev. A 88, 062326 (2013)ADSCrossRef
19.
Zurück zum Zitat Hegerfeldt, G.C.: Driving at the quantum speed limit: optimal control of a two-level system. Phys. Rev. Lett. 111, 260501 (2013)ADSCrossRef Hegerfeldt, G.C.: Driving at the quantum speed limit: optimal control of a two-level system. Phys. Rev. Lett. 111, 260501 (2013)ADSCrossRef
20.
Zurück zum Zitat Hegerfeldt, G.C.: High-speed driving of a two-level system. Phys. Rev. A 90, 032110 (2014)ADSCrossRef Hegerfeldt, G.C.: High-speed driving of a two-level system. Phys. Rev. A 90, 032110 (2014)ADSCrossRef
21.
Zurück zum Zitat Avinadav, C., Fischer, R., London, P., Gershoni, D.: Time-optimal universal control of two-level systems under strong driving. Phys. Rev. B 89, 245311 (2014)ADSCrossRef Avinadav, C., Fischer, R., London, P., Gershoni, D.: Time-optimal universal control of two-level systems under strong driving. Phys. Rev. B 89, 245311 (2014)ADSCrossRef
22.
Zurück zum Zitat Deffner, S.: Optimal control of a qubit in an optical cavity. J. Phys. B 47, 145502 (2014)ADSCrossRef Deffner, S.: Optimal control of a qubit in an optical cavity. J. Phys. B 47, 145502 (2014)ADSCrossRef
23.
Zurück zum Zitat Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Nuovo Cimento A 16, 232 (1973)ADSCrossRef Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Nuovo Cimento A 16, 232 (1973)ADSCrossRef
24.
Zurück zum Zitat Bhattacharyya, K.: Quantum decay and the Mandelstam–Tamm-energy inequality. J. Phys. A 16, 2993 (1983)ADSCrossRef Bhattacharyya, K.: Quantum decay and the Mandelstam–Tamm-energy inequality. J. Phys. A 16, 2993 (1983)ADSCrossRef
27.
Zurück zum Zitat Uffink, J.: The rate of evolution of a quantum state. Am. J. Phys. 61, 935 (1993)ADSCrossRef Uffink, J.: The rate of evolution of a quantum state. Am. J. Phys. 61, 935 (1993)ADSCrossRef
29.
Zurück zum Zitat Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)ADSCrossRef Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)ADSCrossRef
30.
31.
Zurück zum Zitat Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)CrossRef Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)CrossRef
32.
Zurück zum Zitat Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)ADSCrossRef Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)ADSCrossRef
33.
34.
Zurück zum Zitat Brody, D.C., Graefe, E.-M.: Mixed-state evolution in the presence of gain and loss. Phys. Rev. Lett. 109, 230405 (2012)ADSCrossRef Brody, D.C., Graefe, E.-M.: Mixed-state evolution in the presence of gain and loss. Phys. Rev. Lett. 109, 230405 (2012)ADSCrossRef
35.
Zurück zum Zitat Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)ADSCrossRef Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)ADSCrossRef
36.
Zurück zum Zitat Xu, Z.-Y., Luo, S., Yang, W.-L., Liu, C., Zhu, S.: Quantum speedup in a memory environment. Phys. Rev. A 89, 012307 (2014)ADSCrossRef Xu, Z.-Y., Luo, S., Yang, W.-L., Liu, C., Zhu, S.: Quantum speedup in a memory environment. Phys. Rev. A 89, 012307 (2014)ADSCrossRef
37.
Zurück zum Zitat Zhang, Y.-J., Han, W., Xia, Y.-J., Cao, J.-P., Fan, H.: Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 4890 (2014)ADS Zhang, Y.-J., Han, W., Xia, Y.-J., Cao, J.-P., Fan, H.: Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 4890 (2014)ADS
38.
Zurück zum Zitat Sun, Z., Liu, J., Ma, J., Wang, X.: Quantum speed limits in open systems: non-Markovian dynamics without rotating-wave approximation. Sci. Rep. 5, 8444 (2015)ADSCrossRef Sun, Z., Liu, J., Ma, J., Wang, X.: Quantum speed limits in open systems: non-Markovian dynamics without rotating-wave approximation. Sci. Rep. 5, 8444 (2015)ADSCrossRef
39.
Zurück zum Zitat Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (Moscow) 9, 249 (1945)MathSciNetMATH Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (Moscow) 9, 249 (1945)MathSciNetMATH
40.
41.
Zurück zum Zitat Pfeifer, P.: How fast can a quantum state change with time? Phys. Rev. Lett. 70, 3365 (1993)ADSCrossRef Pfeifer, P.: How fast can a quantum state change with time? Phys. Rev. Lett. 70, 3365 (1993)ADSCrossRef
42.
Zurück zum Zitat Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188 (1998)CrossRef Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188 (1998)CrossRef
43.
Zurück zum Zitat Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)ADSCrossRef Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)ADSCrossRef
44.
Zurück zum Zitat Chau, H.F.: Tight upper bound of the maximum speed of evolution of a quantum state. Phys. Rev. A 81, 062133 (2010)ADSCrossRef Chau, H.F.: Tight upper bound of the maximum speed of evolution of a quantum state. Phys. Rev. A 81, 062133 (2010)ADSCrossRef
45.
Zurück zum Zitat Deffner, S., Lutz, E.: Energy-time uncertainty relation for driven quantum systems. J. Phys. A Math. Theor. 46, 335302 (2013)MathSciNetCrossRefMATH Deffner, S., Lutz, E.: Energy-time uncertainty relation for driven quantum systems. J. Phys. A Math. Theor. 46, 335302 (2013)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Zhang, Y.-J., Han, W., Xia, Y.-J., Cao, J.-P., Fan, H.: Classical-driving-assisted quantum speed-up. Phys. Rev. A 91, 032112 (2015)ADSCrossRef Zhang, Y.-J., Han, W., Xia, Y.-J., Cao, J.-P., Fan, H.: Classical-driving-assisted quantum speed-up. Phys. Rev. A 91, 032112 (2015)ADSCrossRef
47.
Zurück zum Zitat Cimmarusti, A.D., Yan, Z., Patterson, B.D., Corcos, L.P., Orozco, L.A., Deffner, S.: Environment-assisted speed-up of the field evolution in cavity quantum electrodynamics. Phys. Rev. Lett. 114, 233602 (2015)ADSCrossRef Cimmarusti, A.D., Yan, Z., Patterson, B.D., Corcos, L.P., Orozco, L.A., Deffner, S.: Environment-assisted speed-up of the field evolution in cavity quantum electrodynamics. Phys. Rev. Lett. 114, 233602 (2015)ADSCrossRef
48.
50.
Zurück zum Zitat Santos, L.F., Viola, L.: Advantages of randomization in coherent quantum dynamical control. New J. Phys. 10, 083009 (2008)ADSCrossRef Santos, L.F., Viola, L.: Advantages of randomization in coherent quantum dynamical control. New J. Phys. 10, 083009 (2008)ADSCrossRef
51.
Zurück zum Zitat Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)ADSCrossRef Facchi, P., Lidar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)ADSCrossRef
52.
Zurück zum Zitat Rossini, D., Facchi, P., Fazio, R., Florio, G., Lidar, D.A., Pascazio, S., Plastina, F., Zanardi, P.: Bang-bang control of a qubit coupled to a quantum critical spin bath. Phys. Rev. A 77, 052112 (2008)ADSCrossRef Rossini, D., Facchi, P., Fazio, R., Florio, G., Lidar, D.A., Pascazio, S., Plastina, F., Zanardi, P.: Bang-bang control of a qubit coupled to a quantum critical spin bath. Phys. Rev. A 77, 052112 (2008)ADSCrossRef
53.
Zurück zum Zitat Chaudhry, A.Z., Gong, J.: Protecting and enhancing spin squeezing via continuous dynamical decoupling. Phys. Rev. A 86, 012311 (2012)ADSCrossRef Chaudhry, A.Z., Gong, J.: Protecting and enhancing spin squeezing via continuous dynamical decoupling. Phys. Rev. A 86, 012311 (2012)ADSCrossRef
54.
Zurück zum Zitat Uhrig, G.S.: Keeping a quantum bit alive by optimized \(\pi \)-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007)ADSCrossRef Uhrig, G.S.: Keeping a quantum bit alive by optimized \(\pi \)-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007)ADSCrossRef
55.
Zurück zum Zitat Uhrig, G.S.: Exact results on dynamical decoupling by \(\pi \) pulses in quantum information processes. New J. Phys. 10, 083024 (2008)ADSCrossRef Uhrig, G.S.: Exact results on dynamical decoupling by \(\pi \) pulses in quantum information processes. New J. Phys. 10, 083024 (2008)ADSCrossRef
56.
Zurück zum Zitat Pasini, S., Fischer, T., Karbach, P., Uhrig, G.S.: Optimization of short coherent control pulses. Phys. Rev. A 77, 032315 (2008)ADSCrossRef Pasini, S., Fischer, T., Karbach, P., Uhrig, G.S.: Optimization of short coherent control pulses. Phys. Rev. A 77, 032315 (2008)ADSCrossRef
57.
Zurück zum Zitat Witzel, W.M., Sarma, S.D.: Concatenated dynamical decoupling in a solid-state spin bath. Phys. Rev. B 76, 241303 (2007)ADSCrossRef Witzel, W.M., Sarma, S.D.: Concatenated dynamical decoupling in a solid-state spin bath. Phys. Rev. B 76, 241303 (2007)ADSCrossRef
58.
Zurück zum Zitat Medford, J., Cywinński, L., Barthel, C., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Scaling of dynamical decoupling for spin qubit. Phys. Rev. Lett. 108, 086802 (2012)ADSCrossRef Medford, J., Cywinński, L., Barthel, C., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Scaling of dynamical decoupling for spin qubit. Phys. Rev. Lett. 108, 086802 (2012)ADSCrossRef
59.
Zurück zum Zitat Khodjasteh, K., Lidar, D.A.: Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett. 95, 180501 (2005)ADSCrossRefMATH Khodjasteh, K., Lidar, D.A.: Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett. 95, 180501 (2005)ADSCrossRefMATH
60.
Zurück zum Zitat Khodjasteh, K., Lidar, D.A.: Performance of deterministic dynamical decoupling schemes: concatenated and periodic pulse sequences. Phys. Rev. A 75, 062310 (2007)ADSCrossRef Khodjasteh, K., Lidar, D.A.: Performance of deterministic dynamical decoupling schemes: concatenated and periodic pulse sequences. Phys. Rev. A 75, 062310 (2007)ADSCrossRef
61.
Zurück zum Zitat West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)ADSCrossRef West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)ADSCrossRef
62.
Zurück zum Zitat Yang, W., Liu, R.-B.: Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation. Phys. Rev. Lett. 101, 180403 (2008)ADSCrossRef Yang, W., Liu, R.-B.: Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation. Phys. Rev. Lett. 101, 180403 (2008)ADSCrossRef
63.
Zurück zum Zitat Gordon, G., Kurizki, G.: Preventing multipartite disentanglement by local modulations. Phys. Rev. Lett. 97, 110503 (2006)ADSCrossRef Gordon, G., Kurizki, G.: Preventing multipartite disentanglement by local modulations. Phys. Rev. Lett. 97, 110503 (2006)ADSCrossRef
64.
Zurück zum Zitat Gordon, G.: Dynamical decoherence control of multi-partite systems. J. Phys. B 42, 223001 (2009)ADSCrossRef Gordon, G.: Dynamical decoherence control of multi-partite systems. J. Phys. B 42, 223001 (2009)ADSCrossRef
65.
Zurück zum Zitat Du, J., Rong, X., Zhao, N., Wang, Y., Yang, J., Liu, R.-B.: Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature (London) 461, 1265 (2009)ADSCrossRef Du, J., Rong, X., Zhao, N., Wang, Y., Yang, J., Liu, R.-B.: Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature (London) 461, 1265 (2009)ADSCrossRef
66.
Zurück zum Zitat Jing, J., Wu, L.-A., You, J.Q., Yu, T.: Nonperturbative quantum dynamical decoupling. Phys. Rev. A 88, 022333 (2013)ADSCrossRef Jing, J., Wu, L.-A., You, J.Q., Yu, T.: Nonperturbative quantum dynamical decoupling. Phys. Rev. A 88, 022333 (2013)ADSCrossRef
67.
Zurück zum Zitat Tan, Q.-S., Huang, Y., Yin, X., Kuang, L.-M., Wang, X.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)ADSCrossRef Tan, Q.-S., Huang, Y., Yin, X., Kuang, L.-M., Wang, X.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)ADSCrossRef
68.
Zurück zum Zitat Tan, Q.-S., Huang, Y., Kuang, L.-M., Wang, X.: Dephasing-assisted parameter estimation in the presence of dynamical decoupling. Phys. Rev. A 89, 063604 (2014)ADSCrossRef Tan, Q.-S., Huang, Y., Kuang, L.-M., Wang, X.: Dephasing-assisted parameter estimation in the presence of dynamical decoupling. Phys. Rev. A 89, 063604 (2014)ADSCrossRef
69.
Zurück zum Zitat Zhang, W., Hu, J.-L., Zhuang, J., You, J.Q., Liu, R.-B.: Protection of center-spin coherence by a dynamically polarized nuclear spin core. Phys. Rev. B 82, 045314 (2010)ADSCrossRef Zhang, W., Hu, J.-L., Zhuang, J., You, J.Q., Liu, R.-B.: Protection of center-spin coherence by a dynamically polarized nuclear spin core. Phys. Rev. B 82, 045314 (2010)ADSCrossRef
70.
Zurück zum Zitat Wang, Z.-Y., Liu, R.-B.: Protection of quantum systems by nested dynamical decoupling. Phys. Rev. A 83, 022306 (2011)ADSCrossRef Wang, Z.-Y., Liu, R.-B.: Protection of quantum systems by nested dynamical decoupling. Phys. Rev. A 83, 022306 (2011)ADSCrossRef
71.
Zurück zum Zitat Yang, W., Wang, Z.-Y., Liu, R.-B.: Preserving qubit coherence by dynamical decoupling. Frontiers Phys. China 6, 2 (2011)ADS Yang, W., Wang, Z.-Y., Liu, R.-B.: Preserving qubit coherence by dynamical decoupling. Frontiers Phys. China 6, 2 (2011)ADS
72.
Zurück zum Zitat Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATH Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATH
73.
Zurück zum Zitat Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)ADSMathSciNetCrossRef Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)ADSMathSciNetCrossRef
74.
Zurück zum Zitat Laine, E.-M., Piilo, J., Breuer, H.-P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)ADSCrossRef Laine, E.-M., Piilo, J., Breuer, H.-P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)ADSCrossRef
75.
Zurück zum Zitat Wissmann, S., Karlsson, A., Laine, E.-M., Piilo, J., Breuer, H.-P.: Optimal state pairs for non-Markovian quantum dynamics. Phys. Rev. A 86, 062108 (2012)ADSCrossRef Wissmann, S., Karlsson, A., Laine, E.-M., Piilo, J., Breuer, H.-P.: Optimal state pairs for non-Markovian quantum dynamics. Phys. Rev. A 86, 062108 (2012)ADSCrossRef
76.
Zurück zum Zitat Wang, G.-Y., Tang, N., Liu, Y., Zeng, H.-S.: Rotation of Bloch sphere induced by Lamb shift in open two-level systems. Chin. Phys. B. 24(5), 050302 (2015)ADSCrossRef Wang, G.-Y., Tang, N., Liu, Y., Zeng, H.-S.: Rotation of Bloch sphere induced by Lamb shift in open two-level systems. Chin. Phys. B. 24(5), 050302 (2015)ADSCrossRef
77.
Zurück zum Zitat Zeng, H.-S., Tang, N., Zheng, Y.-P., Wang, G.-Y.: Equivalence of the measures of non-Markovianity for open two-level systems. Phys. Rev. A 84, 032118 (2011)ADSCrossRef Zeng, H.-S., Tang, N., Zheng, Y.-P., Wang, G.-Y.: Equivalence of the measures of non-Markovianity for open two-level systems. Phys. Rev. A 84, 032118 (2011)ADSCrossRef
78.
Zurück zum Zitat Tang, N., Cheng, W., Zeng, H.-S.: Coherence, correlation and non-Markovianity in qubit systems. Eur. Phys. J. D 68, 278 (2014)ADSCrossRef Tang, N., Cheng, W., Zeng, H.-S.: Coherence, correlation and non-Markovianity in qubit systems. Eur. Phys. J. D 68, 278 (2014)ADSCrossRef
79.
Zurück zum Zitat He, Z., Zou, J., Li, L., Shao, B.: Effective method of calculating the non-Markovianity \({\cal {N}}\) for single-channel open systems. Phys. Rev. A 83, 012108 (2011)ADSCrossRef He, Z., Zou, J., Li, L., Shao, B.: Effective method of calculating the non-Markovianity \({\cal {N}}\) for single-channel open systems. Phys. Rev. A 83, 012108 (2011)ADSCrossRef
80.
Zurück zum Zitat Xu, Z.-Y., Yang, W.-L., Feng, M.: Proposed method for direct measurement of the non-Markovian character of the qubits coupled to bosonic reservoirs. Phys. Rev. A 81, 044105 (2010)ADSCrossRef Xu, Z.-Y., Yang, W.-L., Feng, M.: Proposed method for direct measurement of the non-Markovian character of the qubits coupled to bosonic reservoirs. Phys. Rev. A 81, 044105 (2010)ADSCrossRef
81.
Zurück zum Zitat Thorwart, M., Hartmann, L., Goychuk, I., Hänggi, P.: Controlling decoherence of a two-level atom in a lossy cavity. J. Mod. Opt. 47, 2905 (2000)ADSCrossRef Thorwart, M., Hartmann, L., Goychuk, I., Hänggi, P.: Controlling decoherence of a two-level atom in a lossy cavity. J. Mod. Opt. 47, 2905 (2000)ADSCrossRef
82.
Zurück zum Zitat Tian, L., Lloyd, S., Orlando, T.P.: Decoherence and relaxation of a superconducting quantum bit during measurement. Phys. Rev. B 65, 144516 (2002)ADSCrossRef Tian, L., Lloyd, S., Orlando, T.P.: Decoherence and relaxation of a superconducting quantum bit during measurement. Phys. Rev. B 65, 144516 (2002)ADSCrossRef
83.
Zurück zum Zitat Chiorescu, I., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869 (2003)ADSCrossRef Chiorescu, I., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869 (2003)ADSCrossRef
84.
Zurück zum Zitat Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159 (2004)ADSCrossRef Chiorescu, I., Bertet, P., Semba, K., Nakamura, Y., Harmans, C.J.P.M., Mooij, J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159 (2004)ADSCrossRef
85.
Zurück zum Zitat Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)ADSCrossRef Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)ADSCrossRef
86.
Zurück zum Zitat Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)ADSCrossRef Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)ADSCrossRef
87.
Zurück zum Zitat Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)ADSCrossRef Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)ADSCrossRef
88.
Zurück zum Zitat Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.L.: The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1 (2013)ADSCrossRef Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.L.: The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1 (2013)ADSCrossRef
89.
Zurück zum Zitat Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K., Fitch, G., Cory, D.G., Nakamura, Y., Tsai, J.-S., Oliver, W.D.: Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565 (2011)CrossRef Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K., Fitch, G., Cory, D.G., Nakamura, Y., Tsai, J.-S., Oliver, W.D.: Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565 (2011)CrossRef
90.
Zurück zum Zitat Biercuk, M.J., Uys, H., VanDevender, A.P., Shiga, N., Itano, W.M., Bollinger, J.J.: Experimental Uhrig dynamical decoupling using trapped ions. Phys. Rev. A 79, 062324 (2009)ADSCrossRef Biercuk, M.J., Uys, H., VanDevender, A.P., Shiga, N., Itano, W.M., Bollinger, J.J.: Experimental Uhrig dynamical decoupling using trapped ions. Phys. Rev. A 79, 062324 (2009)ADSCrossRef
91.
Zurück zum Zitat Naydenov, B., Dolde, F., Hall, L.T., Shin, C., Fedder, H., Hollenberg, L.C.L., Jelezko, F., Wrachtrup, J.: Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201 (2011)ADSCrossRef Naydenov, B., Dolde, F., Hall, L.T., Shin, C., Fedder, H., Hollenberg, L.C.L., Jelezko, F., Wrachtrup, J.: Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201 (2011)ADSCrossRef
92.
Zurück zum Zitat Bar-Gill, N., Pham, L.M., Jarmola, A., Budker, D., Walsworth, R.L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)ADSCrossRef Bar-Gill, N., Pham, L.M., Jarmola, A., Budker, D., Walsworth, R.L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)ADSCrossRef
93.
Zurück zum Zitat de Lange, G., Wang, Z.H., Ristè, D., Dobrovitski, V.V., Hanson, R.: Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60 (2010)ADSCrossRef de Lange, G., Wang, Z.H., Ristè, D., Dobrovitski, V.V., Hanson, R.: Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60 (2010)ADSCrossRef
94.
Zurück zum Zitat Ryan, C.A., Hodges, J.S., Cory, D.G.: Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010)ADSCrossRef Ryan, C.A., Hodges, J.S., Cory, D.G.: Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010)ADSCrossRef
Metadaten
Titel
Quantum speedup of uncoupled multiqubit open system via dynamical decoupling pulses
verfasst von
Ya-Ju Song
Le-Man Kuang
Qing-Shou Tan
Publikationsdatum
01.06.2016
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 6/2016
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-016-1291-2

Weitere Artikel der Ausgabe 6/2016

Quantum Information Processing 6/2016 Zur Ausgabe

Neuer Inhalt