Skip to main content

2015 | OriginalPaper | Buchkapitel

9. Reaction-Diffusion Dynamics Induced Surface Instabilities

verfasst von : Murat Guvendiren

Erschienen in: Polymer Surfaces in Motion

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface instabilities arise on polymeric systems either during fabrication or post-fabrication in response to an external stimulus. The occurrence, mode, and size of these instabilities are determined by the heterogeneity of the polymer system, which induces dynamic changes in reaction and diffusion of species within the polymer system. This chapter mainly focuses on transient to persistent creasing patterns, creasing to wrinkling transition, and self-oscillating patterns, particularly in gel/solvent systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Schaffer, E., et al.: Electrically induced structure formation and pattern transfer. Nature 403 (6772), 874–877 (2000)CrossRef Schaffer, E., et al.: Electrically induced structure formation and pattern transfer. Nature 403 (6772), 874–877 (2000)CrossRef
2.
Zurück zum Zitat Quake, S.R., Scherer, A.: From micro- to nanofabrication with soft materials. Science 290 (5496), 1536–1540 (2000)CrossRef Quake, S.R., Scherer, A.: From micro- to nanofabrication with soft materials. Science 290 (5496), 1536–1540 (2000)CrossRef
3.
Zurück zum Zitat Thorsen, T., et al.: Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86(18), 4163–4166 (2001)CrossRef Thorsen, T., et al.: Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86(18), 4163–4166 (2001)CrossRef
4.
Zurück zum Zitat Sidorenko, A., et al.: Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315(5811), 487–490 (2007)CrossRef Sidorenko, A., et al.: Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315(5811), 487–490 (2007)CrossRef
5.
Zurück zum Zitat Geim, A.K., et al.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2(7), 461–463 (2003)CrossRef Geim, A.K., et al.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2(7), 461–463 (2003)CrossRef
6.
Zurück zum Zitat Lee, H., Lee, B.P., Messersmith, P.B.: A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151), 338–341 (2007)CrossRef Lee, H., Lee, B.P., Messersmith, P.B.: A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151), 338–341 (2007)CrossRef
7.
Zurück zum Zitat Lin, P.C., et al.: Mechanically tunable dry adhesive from wrinkled elastomers. Soft Matter 4 (9), 1830–1835 (2008)CrossRef Lin, P.C., et al.: Mechanically tunable dry adhesive from wrinkled elastomers. Soft Matter 4 (9), 1830–1835 (2008)CrossRef
8.
Zurück zum Zitat Chan, E.P., Crosby, A.J.: Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18 (24), 3238–3242 (2006)CrossRef Chan, E.P., Crosby, A.J.: Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18 (24), 3238–3242 (2006)CrossRef
9.
Zurück zum Zitat Chandra, D., Yang, S., Lin, P.C.: Strain responsive concave and convex microlens arrays. Appl. Phys. Lett. 91(25), 251912 (2007)CrossRef Chandra, D., Yang, S., Lin, P.C.: Strain responsive concave and convex microlens arrays. Appl. Phys. Lett. 91(25), 251912 (2007)CrossRef
10.
Zurück zum Zitat Yang, S., et al.: Functional biomimetic microlens arrays with integrated pores. Adv. Mater. 17 (4), 435–438 (2005)CrossRef Yang, S., et al.: Functional biomimetic microlens arrays with integrated pores. Adv. Mater. 17 (4), 435–438 (2005)CrossRef
11.
Zurück zum Zitat Guvendiren, M., Burdick, J.A.: The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31(25), 6511–6518 (2010)CrossRef Guvendiren, M., Burdick, J.A.: The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31(25), 6511–6518 (2010)CrossRef
12.
Zurück zum Zitat Chen, C.S., et al.: Geometric control of cell life and death. Science 276(5317), 1425–1428 (1997)CrossRef Chen, C.S., et al.: Geometric control of cell life and death. Science 276(5317), 1425–1428 (1997)CrossRef
13.
Zurück zum Zitat Stafford, C.M., et al.: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3(8), 545–550 (2004)CrossRef Stafford, C.M., et al.: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3(8), 545–550 (2004)CrossRef
14.
Zurück zum Zitat Hwa, T., Kardar, M.: Evolution of surface patterns on swelling gels. Phys. Rev. Lett. 61(1), 106–109 (1988)CrossRef Hwa, T., Kardar, M.: Evolution of surface patterns on swelling gels. Phys. Rev. Lett. 61(1), 106–109 (1988)CrossRef
15.
Zurück zum Zitat Sekimoto, K., Kawasaki, K.: Elastic instability of gels upon swelling. J. Phys. Soc. Jpn. 56(9), 2997–3000 (1987)CrossRef Sekimoto, K., Kawasaki, K.: Elastic instability of gels upon swelling. J. Phys. Soc. Jpn. 56(9), 2997–3000 (1987)CrossRef
16.
Zurück zum Zitat Sekimoto, K., Kawasaki, K.: Elastic instabilities and phase coexistence of gels. Phys. A 154 (3), 384–420 (1989)CrossRef Sekimoto, K., Kawasaki, K.: Elastic instabilities and phase coexistence of gels. Phys. A 154 (3), 384–420 (1989)CrossRef
17.
Zurück zum Zitat Tanaka, T.: Kinetics of phase-transition in polymer gels. Phys. A 140(1–2), 261–268 (1986)CrossRef Tanaka, T.: Kinetics of phase-transition in polymer gels. Phys. A 140(1–2), 261–268 (1986)CrossRef
18.
Zurück zum Zitat Tanaka, T., et al.: Phase-transitions in ionic gels. Phys. Rev. Lett. 45(20), 1636–1639 (1980)CrossRef Tanaka, T., et al.: Phase-transitions in ionic gels. Phys. Rev. Lett. 45(20), 1636–1639 (1980)CrossRef
19.
Zurück zum Zitat Tanaka, T., et al.: Mechanical instability of gels at the phase transition. Nature 325(6107), 796–798 (1987)CrossRef Tanaka, T., et al.: Mechanical instability of gels at the phase transition. Nature 325(6107), 796–798 (1987)CrossRef
20.
Zurück zum Zitat Trujillo, V., Kim, J., Hayward, R.C.: Creasing instability of surface-attached hydrogels. Soft Matter 4(3), 564–569 (2008)CrossRef Trujillo, V., Kim, J., Hayward, R.C.: Creasing instability of surface-attached hydrogels. Soft Matter 4(3), 564–569 (2008)CrossRef
21.
Zurück zum Zitat Tanaka, H., Sigehuzi, T.: Surface-pattern evolution in a selling gel under a geometrical constraint - direct observation of fold structure and its coarsening dynamics. Phys. Rev. E 49(1), R39–R42 (1994)CrossRef Tanaka, H., Sigehuzi, T.: Surface-pattern evolution in a selling gel under a geometrical constraint - direct observation of fold structure and its coarsening dynamics. Phys. Rev. E 49(1), R39–R42 (1994)CrossRef
22.
Zurück zum Zitat Tanaka, H., et al.: Morphological and kinetic evolution of surface patterns in gels during the swelling process - evidence of dynamic pattern ordering. Phys. Rev. Lett. 68(18), 2794–2797 (1992)CrossRef Tanaka, H., et al.: Morphological and kinetic evolution of surface patterns in gels during the swelling process - evidence of dynamic pattern ordering. Phys. Rev. Lett. 68(18), 2794–2797 (1992)CrossRef
23.
Zurück zum Zitat Onuki, A.: Theory of pattern-formation in gels - surface folding in highly compressible elastic bodies. Phys. Rev. A 39(11), 5932–5948 (1989)CrossRef Onuki, A.: Theory of pattern-formation in gels - surface folding in highly compressible elastic bodies. Phys. Rev. A 39(11), 5932–5948 (1989)CrossRef
24.
Zurück zum Zitat Onuki, A.: Pattern-formation in gels. J. Phys. Soc. Jpn. 57(3), 703–706 (1988)CrossRef Onuki, A.: Pattern-formation in gels. J. Phys. Soc. Jpn. 57(3), 703–706 (1988)CrossRef
25.
Zurück zum Zitat Guvendiren, M., Burdick, J.A., Yang, S.: Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter 6 (9), 2044–2049 (2010)CrossRef Guvendiren, M., Burdick, J.A., Yang, S.: Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient. Soft Matter 6 (9), 2044–2049 (2010)CrossRef
26.
Zurück zum Zitat Toomey, R., Freidank, D., Ruhe, J.: Swelling behavior of thin, surface-attached polymer networks. Macromolecules 37(3), 882–887 (2004)CrossRef Toomey, R., Freidank, D., Ruhe, J.: Swelling behavior of thin, surface-attached polymer networks. Macromolecules 37(3), 882–887 (2004)CrossRef
27.
Zurück zum Zitat Harmon, M.E., Kucking, D., Frank, C.W.: Photo-cross-linkable PNIPAAm copolymers. 5. Mechanical properties of hydrogel layers. Langmuir 19(26), 10660–10665 (2003)CrossRef Harmon, M.E., Kucking, D., Frank, C.W.: Photo-cross-linkable PNIPAAm copolymers. 5. Mechanical properties of hydrogel layers. Langmuir 19(26), 10660–10665 (2003)CrossRef
28.
Zurück zum Zitat Harmon, M.E., Kuckling, D., Frank, C.W.: Photo-cross-linkable PNIPAAm copolymers. 2. Effects of constraint on temperature and pH-responsive hydrogel layers. Macromolecules 36(1), 162–172 (2003)CrossRef Harmon, M.E., Kuckling, D., Frank, C.W.: Photo-cross-linkable PNIPAAm copolymers. 2. Effects of constraint on temperature and pH-responsive hydrogel layers. Macromolecules 36(1), 162–172 (2003)CrossRef
29.
Zurück zum Zitat Harmon, M.E., et al.: Photo-cross-linkable PNIPAAm copolymers. 4. Effects of copolymerization and cross-linking on the volume-phase transition in constrained hydrogel layers. Langmuir 19(26), 10947–10956 (2003)CrossRef Harmon, M.E., et al.: Photo-cross-linkable PNIPAAm copolymers. 4. Effects of copolymerization and cross-linking on the volume-phase transition in constrained hydrogel layers. Langmuir 19(26), 10947–10956 (2003)CrossRef
30.
Zurück zum Zitat Basu, S.K., McCormick, A.V., Scriven, L.E.: Stress generation by solvent absorption and wrinkling of a cross-linked coating atop a viscous or elastic base. Langmuir 22(13), 5916–5924 (2006)CrossRef Basu, S.K., McCormick, A.V., Scriven, L.E.: Stress generation by solvent absorption and wrinkling of a cross-linked coating atop a viscous or elastic base. Langmuir 22(13), 5916–5924 (2006)CrossRef
31.
Zurück zum Zitat Basu, S.K., et al.: Mechanism of wrinkle formation in curing coatings. Prog. Org. Coat. 53(1), 1–16 (2005)CrossRef Basu, S.K., et al.: Mechanism of wrinkle formation in curing coatings. Prog. Org. Coat. 53(1), 1–16 (2005)CrossRef
32.
Zurück zum Zitat Gent, A.N., Cho, I.S.: Surface instabilities in compressed or bent rubber blocks. Rubber Chem. Technol. 72(2), 253–262 (1999)CrossRef Gent, A.N., Cho, I.S.: Surface instabilities in compressed or bent rubber blocks. Rubber Chem. Technol. 72(2), 253–262 (1999)CrossRef
33.
Zurück zum Zitat Hong, W., Zhao, X., Suo, Z.: Formation of creases on the surfaces of elastomers and gels. Appl. Phys. Lett. 95(11), 111901 (2009)CrossRef Hong, W., Zhao, X., Suo, Z.: Formation of creases on the surfaces of elastomers and gels. Appl. Phys. Lett. 95(11), 111901 (2009)CrossRef
34.
Zurück zum Zitat Guvendiren, M., Burdick, J.A., Yang, S.: Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients. Soft Matter 6(22), 5795–5801 (2010)CrossRef Guvendiren, M., Burdick, J.A., Yang, S.: Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients. Soft Matter 6(22), 5795–5801 (2010)CrossRef
35.
Zurück zum Zitat Weiss, F., et al.: Creases and wrinkles on the surface of a swollen gel. J. Appl. Phys. 114(7), 073507 (2013)CrossRef Weiss, F., et al.: Creases and wrinkles on the surface of a swollen gel. J. Appl. Phys. 114(7), 073507 (2013)CrossRef
36.
Zurück zum Zitat Bowden, N., et al.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681), 146–149 (1998)CrossRef Bowden, N., et al.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393(6681), 146–149 (1998)CrossRef
37.
Zurück zum Zitat Groenewold, J.: Wrinkling of plates coupled with soft elastic media. Phys. A 298(1–2), 32–45 (2001)CrossRef Groenewold, J.: Wrinkling of plates coupled with soft elastic media. Phys. A 298(1–2), 32–45 (2001)CrossRef
38.
Zurück zum Zitat Stafford, C.M., et al.: Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39(15), 5095–5099 (2006)CrossRef Stafford, C.M., et al.: Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39(15), 5095–5099 (2006)CrossRef
39.
Zurück zum Zitat Chan, E.P., Crosby, A.J.: Spontaneous formation of stable aligned wrinkling patterns. Soft Matter 2(4), 324–328 (2006)CrossRef Chan, E.P., Crosby, A.J.: Spontaneous formation of stable aligned wrinkling patterns. Soft Matter 2(4), 324–328 (2006)CrossRef
40.
Zurück zum Zitat Efimenko, K., et al.: Nested self-similar wrinkling patterns in skins. Nat. Mater. 4(4), 293–297 (2005)CrossRef Efimenko, K., et al.: Nested self-similar wrinkling patterns in skins. Nat. Mater. 4(4), 293–297 (2005)CrossRef
41.
Zurück zum Zitat Hayward, R.C., Chmelka, B.F., Kramer, E.J.: Template cross-linking effects on morphologies of swellable block copolymer and mesostructured silica thin films. Macromolecules 38(18), 7768–7783 (2005)CrossRef Hayward, R.C., Chmelka, B.F., Kramer, E.J.: Template cross-linking effects on morphologies of swellable block copolymer and mesostructured silica thin films. Macromolecules 38(18), 7768–7783 (2005)CrossRef
42.
Zurück zum Zitat Huang, R.: Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids 53(1), 63–89 (2005)CrossRef Huang, R.: Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids 53(1), 63–89 (2005)CrossRef
43.
Zurück zum Zitat Chen, X., Hutchinson, J.W.: Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71(5), 597–603 (2004)CrossRef Chen, X., Hutchinson, J.W.: Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71(5), 597–603 (2004)CrossRef
44.
Zurück zum Zitat Guvendiren, M., Yang, S., Burdick, J.A.: Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19(19), 3038–3045 (2009)CrossRef Guvendiren, M., Yang, S., Burdick, J.A.: Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv. Funct. Mater. 19(19), 3038–3045 (2009)CrossRef
45.
Zurück zum Zitat Chung, J.Y., Nolte, A.J., Stafford, C.M.: Diffusion-controlled, self-organized growth of symmetric wrinkling patterns. Adv. Mater. 21(13), 1358–1362 (2009)CrossRef Chung, J.Y., Nolte, A.J., Stafford, C.M.: Diffusion-controlled, self-organized growth of symmetric wrinkling patterns. Adv. Mater. 21(13), 1358–1362 (2009)CrossRef
46.
Zurück zum Zitat Breid, D., Crosby, A.J.: Effect of stress state on wrinkle morphology. Soft Matter 7(9), 4490–4496 (2011)CrossRef Breid, D., Crosby, A.J.: Effect of stress state on wrinkle morphology. Soft Matter 7(9), 4490–4496 (2011)CrossRef
47.
Zurück zum Zitat Cao, Y., Hutchinson, J.W.: From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 468(2137), 94–115 (2012)CrossRef Cao, Y., Hutchinson, J.W.: From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 468(2137), 94–115 (2012)CrossRef
48.
Zurück zum Zitat Wong, W.H., et al.: Surface instability maps for soft materials. Soft Matter 6(22), 5743–5750 (2010)CrossRef Wong, W.H., et al.: Surface instability maps for soft materials. Soft Matter 6(22), 5743–5750 (2010)CrossRef
49.
Zurück zum Zitat Holmes, D.P., Crosby, A.J.: Snapping surfaces. Adv. Mater. 19, 3589–3593 (2007)CrossRef Holmes, D.P., Crosby, A.J.: Snapping surfaces. Adv. Mater. 19, 3589–3593 (2007)CrossRef
50.
Zurück zum Zitat Holmes, D.P., Ursiny, M., Crosby, A.J.: Crumpled surface structures. Soft Matter 4(1), 82–85 (2008)CrossRef Holmes, D.P., Ursiny, M., Crosby, A.J.: Crumpled surface structures. Soft Matter 4(1), 82–85 (2008)CrossRef
51.
Zurück zum Zitat Zhang, Y., et al.: One-step nanoscale assembly of complex structures via harnessing of elastic instability. Nano Lett. 8(4), 1192–1196 (2008)CrossRef Zhang, Y., et al.: One-step nanoscale assembly of complex structures via harnessing of elastic instability. Nano Lett. 8(4), 1192–1196 (2008)CrossRef
52.
Zurück zum Zitat Breid, D., Crosby, A.J.: Surface wrinkling behavior of finite circular plates. Soft Matter 5, 425–431 (2009)CrossRef Breid, D., Crosby, A.J.: Surface wrinkling behavior of finite circular plates. Soft Matter 5, 425–431 (2009)CrossRef
53.
Zurück zum Zitat Sharp, J.S., Jones, R.A.L.: Swelling-induced morphology in ultrathin supported films of poly(d, l-lactide). Phys. Rev. E 66(1), 011801 (2002)CrossRef Sharp, J.S., Jones, R.A.L.: Swelling-induced morphology in ultrathin supported films of poly(d, l-lactide). Phys. Rev. E 66(1), 011801 (2002)CrossRef
54.
Zurück zum Zitat Klein, Y., Efrati, E., Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315(5815), 1116–1120 (2007)CrossRef Klein, Y., Efrati, E., Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315(5815), 1116–1120 (2007)CrossRef
55.
Zurück zum Zitat Cerda, E., Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90(7), 4 (2003)CrossRef Cerda, E., Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90(7), 4 (2003)CrossRef
56.
Zurück zum Zitat Huck, W.T.S., et al.: Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16(7), 3497–3501 (2000)CrossRef Huck, W.T.S., et al.: Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16(7), 3497–3501 (2000)CrossRef
57.
Zurück zum Zitat Sultan, E., Boudaoud, A.: The buckling of a swollen thin gel layer bound to a compliant substrate. J. Appl. Mech. Trans. ASME 75(5), 051002 (2008)CrossRef Sultan, E., Boudaoud, A.: The buckling of a swollen thin gel layer bound to a compliant substrate. J. Appl. Mech. Trans. ASME 75(5), 051002 (2008)CrossRef
58.
Zurück zum Zitat Wu, Z.G., Bouklas, N., Huang, R.: Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction. Int. J. Solids Struct. 50(3–4), 578–587 (2013)CrossRef Wu, Z.G., Bouklas, N., Huang, R.: Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction. Int. J. Solids Struct. 50(3–4), 578–587 (2013)CrossRef
59.
Zurück zum Zitat Lee, D., et al.: Surface instability of an elastic half space with material properties varying with depth. J. Mech. Phys. Solids 56(3), 858–868 (2008)CrossRef Lee, D., et al.: Surface instability of an elastic half space with material properties varying with depth. J. Mech. Phys. Solids 56(3), 858–868 (2008)CrossRef
60.
Zurück zum Zitat Guvendiren, M., et al.: 9.22 - Photopolymerizable systems. In: Matyjaszewski, K., Möller, M. (eds.) Polymer Science: A Comprehensive Reference, pp. 413–438. Elsevier, Amsterdam (2012)CrossRef Guvendiren, M., et al.: 9.22 - Photopolymerizable systems. In: Matyjaszewski, K., Möller, M. (eds.) Polymer Science: A Comprehensive Reference, pp. 413–438. Elsevier, Amsterdam (2012)CrossRef
61.
Zurück zum Zitat Li, Y.Y., et al.: Patterned polymer films via reactive silane infusion-induced wrinkling. Langmuir 29(14), 4632–4639 (2013)CrossRef Li, Y.Y., et al.: Patterned polymer films via reactive silane infusion-induced wrinkling. Langmuir 29(14), 4632–4639 (2013)CrossRef
62.
Zurück zum Zitat Flory, P.J., Rehner Jr., J.: Statistical mechanics of cross-linked polymer networks. II. Swelling. J. Chem. Phys. 11, 521–526 (1943)CrossRef Flory, P.J., Rehner Jr., J.: Statistical mechanics of cross-linked polymer networks. II. Swelling. J. Chem. Phys. 11, 521–526 (1943)CrossRef
63.
Zurück zum Zitat Barton, A.F.M.: Solubility parameters. Chem. Rev. 75(6), 731–753 (1975)CrossRef Barton, A.F.M.: Solubility parameters. Chem. Rev. 75(6), 731–753 (1975)CrossRef
64.
Zurück zum Zitat Hildebrand, J.H., Prausnitz, J.M., Scott, R.L., Hildebrand, J.H., Prausnitz, J.M., Scott, R.L.: Regular and Related Solutions, 3rd edn. Van Nostrand-Reinhold, Princeton (1970) Hildebrand, J.H., Prausnitz, J.M., Scott, R.L., Hildebrand, J.H., Prausnitz, J.M., Scott, R.L.: Regular and Related Solutions, 3rd edn. Van Nostrand-Reinhold, Princeton (1970)
65.
Zurück zum Zitat Ramanan, V.V., et al.: Photocleavable side groups to spatially alter hydrogel properties and cellular interactions. J. Mater. Chem. 20(40), 8920–8926 (2010)CrossRef Ramanan, V.V., et al.: Photocleavable side groups to spatially alter hydrogel properties and cellular interactions. J. Mater. Chem. 20(40), 8920–8926 (2010)CrossRef
66.
Zurück zum Zitat Yamaguchi, T., et al.: Gel systems for the Belousov-Zhabotinskii reaction. J. Phys. Chem. 95 (15), 5831–5837 (1991)CrossRef Yamaguchi, T., et al.: Gel systems for the Belousov-Zhabotinskii reaction. J. Phys. Chem. 95 (15), 5831–5837 (1991)CrossRef
67.
Zurück zum Zitat Yoshida, R., Kokufuta, E., Yamaguchi, T.: Beating polymer gels coupled with a nonlinear chemical reaction. Chaos 9(2), 260–266 (1999)CrossRef Yoshida, R., Kokufuta, E., Yamaguchi, T.: Beating polymer gels coupled with a nonlinear chemical reaction. Chaos 9(2), 260–266 (1999)CrossRef
68.
Zurück zum Zitat Yoshida, R., et al.: Self-oscillating gels. Adv. Mater. 9(2), 175–178 (1997)CrossRef Yoshida, R., et al.: Self-oscillating gels. Adv. Mater. 9(2), 175–178 (1997)CrossRef
69.
Zurück zum Zitat Yoshida, R., et al.: Self-oscillation of polymer gels coupled with the Belousov-Zhabotinsky reaction. ACH Model Chem. 135(3), 409–416 (1998) Yoshida, R., et al.: Self-oscillation of polymer gels coupled with the Belousov-Zhabotinsky reaction. ACH Model Chem. 135(3), 409–416 (1998)
70.
Zurück zum Zitat Yoshida, R., et al.: Self-oscillating gel. J. Am. Chem. Soc. 118(21), 5134–5135 (1996)CrossRef Yoshida, R., et al.: Self-oscillating gel. J. Am. Chem. Soc. 118(21), 5134–5135 (1996)CrossRef
71.
Zurück zum Zitat Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225(5232), 535–537 (1970)CrossRef Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225(5232), 535–537 (1970)CrossRef
72.
Zurück zum Zitat Yashin, V.V., et al.: Mechano-chemical oscillations and waves in reactive gels. Rep. Prog. Phys. 75(6), 066601 (2012)CrossRef Yashin, V.V., et al.: Mechano-chemical oscillations and waves in reactive gels. Rep. Prog. Phys. 75(6), 066601 (2012)CrossRef
73.
Zurück zum Zitat Sasaki, S., et al.: Mechanical oscillation coupled with the Belousov–Zhabotinsky Reaction in Gel. Langmuir 19(14), 5595–5600 (2003)CrossRef Sasaki, S., et al.: Mechanical oscillation coupled with the Belousov–Zhabotinsky Reaction in Gel. Langmuir 19(14), 5595–5600 (2003)CrossRef
74.
Zurück zum Zitat Miyakawa, K., et al.: Chemical waves in self-oscillating gels. Phys. Rev. E 62(1), 793–798 (2000)CrossRef Miyakawa, K., et al.: Chemical waves in self-oscillating gels. Phys. Rev. E 62(1), 793–798 (2000)CrossRef
75.
Zurück zum Zitat Chen, I.C., et al.: Mechanical resuscitation of chemical oscillations in Belousov–Zhabotinsky gels. Adv. Funct. Mater. 22(12), 2535–2541 (2012)CrossRef Chen, I.C., et al.: Mechanical resuscitation of chemical oscillations in Belousov–Zhabotinsky gels. Adv. Funct. Mater. 22(12), 2535–2541 (2012)CrossRef
76.
Zurück zum Zitat Chen, I.C., et al.: Shape- and size-dependent patterns in self-oscillating polymer gels. Soft Matter 7(7), 3141–3146 (2011)CrossRef Chen, I.C., et al.: Shape- and size-dependent patterns in self-oscillating polymer gels. Soft Matter 7(7), 3141–3146 (2011)CrossRef
77.
Zurück zum Zitat Konotop, I.Y., et al.: Self-oscillatory systems based on polymer gels. Polym. Sci. Ser. B 51 (9–10), 383–388 (2009)CrossRef Konotop, I.Y., et al.: Self-oscillatory systems based on polymer gels. Polym. Sci. Ser. B 51 (9–10), 383–388 (2009)CrossRef
78.
Zurück zum Zitat Konotop, I.Y., et al.: Chemomechanical oscillations in polymer gels: effect of the size of samples. Polym. Sci. Ser. B 53(1–2), 26–30 (2011)CrossRef Konotop, I.Y., et al.: Chemomechanical oscillations in polymer gels: effect of the size of samples. Polym. Sci. Ser. B 53(1–2), 26–30 (2011)CrossRef
79.
Zurück zum Zitat Smith, M.L., et al.: Autonomic hydrogels through postfunctionalization of gelatin. Chem. Mater. 24(15), 3074–3080 (2012)CrossRef Smith, M.L., et al.: Autonomic hydrogels through postfunctionalization of gelatin. Chem. Mater. 24(15), 3074–3080 (2012)CrossRef
80.
Zurück zum Zitat Yuan, P., et al.: UV patternable thin film chemistry for shape and functionally versatile self-oscillating gels. Soft Matter 9(4), 1231–1243 (2013)CrossRef Yuan, P., et al.: UV patternable thin film chemistry for shape and functionally versatile self-oscillating gels. Soft Matter 9(4), 1231–1243 (2013)CrossRef
81.
Zurück zum Zitat Kramb, R.C., et al.: Autonomic composite hydrogels by reactive printing: materials and oscillatory response. Soft Matter 10(9), 1329–1336 (2014)CrossRef Kramb, R.C., et al.: Autonomic composite hydrogels by reactive printing: materials and oscillatory response. Soft Matter 10(9), 1329–1336 (2014)CrossRef
82.
Zurück zum Zitat Yoshida, R., et al.: Pulsatile drug-delivery systems using hydrogels. Adv. Drug Deliv. Rev. 11 (1–2), 85–108 (1993)CrossRef Yoshida, R., et al.: Pulsatile drug-delivery systems using hydrogels. Adv. Drug Deliv. Rev. 11 (1–2), 85–108 (1993)CrossRef
83.
Zurück zum Zitat Dayal, P., Kuksenok, O., Balazs, A.C.: Directing the behavior of active, self-oscillating gels with light. Macromolecules 47(10), 3231–3242 (2014)CrossRef Dayal, P., Kuksenok, O., Balazs, A.C.: Directing the behavior of active, self-oscillating gels with light. Macromolecules 47(10), 3231–3242 (2014)CrossRef
84.
Zurück zum Zitat Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237(641), 37–72 (1952)CrossRef Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237(641), 37–72 (1952)CrossRef
85.
Zurück zum Zitat Castets, V., et al.: Experimental-evidence of a sustained standing Turing-type nonequilibrium chemical-pattern. Phys. Rev. Lett. 64(24), 2953–2956 (1990)CrossRef Castets, V., et al.: Experimental-evidence of a sustained standing Turing-type nonequilibrium chemical-pattern. Phys. Rev. Lett. 64(24), 2953–2956 (1990)CrossRef
86.
Zurück zum Zitat Lee, K.J., et al.: Pattern-formation by interacting chemical fronts. Science 261(5118), 192–194 (1993)CrossRef Lee, K.J., et al.: Pattern-formation by interacting chemical fronts. Science 261(5118), 192–194 (1993)CrossRef
87.
Zurück zum Zitat Lee, K.J., et al.: Experimental-observation of self-replicating spots in a reaction-diffusion system. Nature 369(6477), 215–218 (1994)CrossRef Lee, K.J., et al.: Experimental-observation of self-replicating spots in a reaction-diffusion system. Nature 369(6477), 215–218 (1994)CrossRef
88.
Zurück zum Zitat Lee, K.J., Swinney, H.L.: Lamellar structures and self-replicating spots in a reaction-diffusion system. Phys. Rev. E 51(3), 1899–1915 (1995)CrossRef Lee, K.J., Swinney, H.L.: Lamellar structures and self-replicating spots in a reaction-diffusion system. Phys. Rev. E 51(3), 1899–1915 (1995)CrossRef
89.
Zurück zum Zitat Li, G., Qi, O.Y., Swinney, H.L.: Transitions in two-dimensional patterns in a ferrocyanide-iodate-sulfite reaction. J. Chem. Phys. 105(24), 10830–10837 (1996)CrossRef Li, G., Qi, O.Y., Swinney, H.L.: Transitions in two-dimensional patterns in a ferrocyanide-iodate-sulfite reaction. J. Chem. Phys. 105(24), 10830–10837 (1996)CrossRef
90.
Zurück zum Zitat Vigil, R.D., Ouyang, Q., Swinney, H.L.: Turing patterns in a simple gel reactor. Phys. A 188 (1–3), 17–25 (1992)CrossRef Vigil, R.D., Ouyang, Q., Swinney, H.L.: Turing patterns in a simple gel reactor. Phys. A 188 (1–3), 17–25 (1992)CrossRef
91.
Zurück zum Zitat Ouyang, Q., Noszticzius, Z., Swinney, H.L.: Spatial bistability of 2-dimensional Turing patterns in a reaction-diffusion system. J. Phys. Chem. 96(16), 6773–6776 (1992)CrossRef Ouyang, Q., Noszticzius, Z., Swinney, H.L.: Spatial bistability of 2-dimensional Turing patterns in a reaction-diffusion system. J. Phys. Chem. 96(16), 6773–6776 (1992)CrossRef
92.
Zurück zum Zitat Ouyang, Q., Swinney, H.L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352(6336), 610–612 (1991)CrossRef Ouyang, Q., Swinney, H.L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352(6336), 610–612 (1991)CrossRef
93.
Zurück zum Zitat Ueno, T., Yoshida, R.: Effect of gel network on pattern formation in the ferrocyanide–iodate–sulfite reaction. J. Phys. Chem. A 115(21), 5231–5237 (2011)CrossRef Ueno, T., Yoshida, R.: Effect of gel network on pattern formation in the ferrocyanide–iodate–sulfite reaction. J. Phys. Chem. A 115(21), 5231–5237 (2011)CrossRef
Metadaten
Titel
Reaction-Diffusion Dynamics Induced Surface Instabilities
verfasst von
Murat Guvendiren
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17431-0_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.