Skip to main content

2020 | OriginalPaper | Buchkapitel

3. Reactive Modification of Fiber Polymer Materials for Textile Applications

verfasst von : Avinash P. Manian, Tung Pham, Thomas Bechtold

Erschienen in: Reactive and Functional Polymers Volume One

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many reactive processes with the purpose of modifying the structure of fiber polymers are applied in textile chemistry in order to change their properties. These processes depend on the chemical nature of the polymer and the type of modification, and these aspects are discussed with respect to alkalization, chemical crosslinking with bi- and multifunctional reagents, hydrolytic processes, deposition and grafting of polymers, as well as crosslinking with urea-based reactive systems (e.g. dry cure processes). The selection of process parameters are of decisive importance for the efficient development of a desired portfolio of properties in a certain fiber-based product. This chapter aims to analyze the recent advances in reactive modification of fiber polymer materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Badri, A., Whittaker, M. R., & Zetterlund, P. B. (2012). Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 50(15), 2981–2992. https://doi.org/10.1002/pola.26094.CrossRef Badri, A., Whittaker, M. R., & Zetterlund, P. B. (2012). Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 50(15), 2981–2992. https://​doi.​org/​10.​1002/​pola.​26094.CrossRef
Zurück zum Zitat Bajgar, V., Penhaker, M., Martinková, L., Pavlovič, A., Bober, P., Trchová, M., & Stejskal, J. (2016). Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response. Sensors, 16(4), 498. https://doi.org/10.3390/s16040498.CrossRef Bajgar, V., Penhaker, M., Martinková, L., Pavlovič, A., Bober, P., Trchová, M., & Stejskal, J. (2016). Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response. Sensors, 16(4), 498. https://​doi.​org/​10.​3390/​s16040498.CrossRef
Zurück zum Zitat Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., & Klok, H.-A. (2009). Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chemical Reviews, 109(11), 5437–5527. https://doi.org/10.1021/cr900045a.CrossRefPubMed Barbey, R., Lavanant, L., Paripovic, D., Schüwer, N., Sugnaux, C., Tugulu, S., & Klok, H.-A. (2009). Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chemical Reviews, 109(11), 5437–5527. https://​doi.​org/​10.​1021/​cr900045a.CrossRefPubMed
Zurück zum Zitat Brown, S., Yue, Y., Kuo, L.-J., Mehio, N., Li, M., Gill, G., Tsouris, C., Mayes, R. T., Saito, T., & Dai, S. (2016). Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. Industrial & Engineering Chemistry Research, 55(15), 4139–4148. https://doi.org/10.1021/acs.iecr.5b03355.CrossRef Brown, S., Yue, Y., Kuo, L.-J., Mehio, N., Li, M., Gill, G., Tsouris, C., Mayes, R. T., Saito, T., & Dai, S. (2016). Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. Industrial & Engineering Chemistry Research, 55(15), 4139–4148. https://​doi.​org/​10.​1021/​acs.​iecr.​5b03355.CrossRef
Zurück zum Zitat Buga, M.-R., Zaharia, C., Bălan, M., Bressy, C., Ziarelli, F., & Margaillan, A. (2015). Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications. Materials Science and Engineering: C, 51, 233–241. https://doi.org/10.1016/j.msec.2015.03.006.CrossRef Buga, M.-R., Zaharia, C., Bălan, M., Bressy, C., Ziarelli, F., & Margaillan, A. (2015). Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications. Materials Science and Engineering: C, 51, 233–241. https://​doi.​org/​10.​1016/​j.​msec.​2015.​03.​006.CrossRef
Zurück zum Zitat Ducoroy, L., Martel, B., Bacquet, B., & Morcellet, M. (2007). Ion exchange textiles from the finishing of PET fabrics with cyclodextrins and citric acid for the sorption of metallic cations in water. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57(1), 271–277. https://doi.org/10.1007/s10847-006-9172-4.CrossRef Ducoroy, L., Martel, B., Bacquet, B., & Morcellet, M. (2007). Ion exchange textiles from the finishing of PET fabrics with cyclodextrins and citric acid for the sorption of metallic cations in water. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57(1), 271–277. https://​doi.​org/​10.​1007/​s10847-006-9172-4.CrossRef
Zurück zum Zitat Gomes, A. P., Mano, J. F., Queiroz, J. A., & Gouveia, I. C. (2013). Layer-by-layer deposition of antimicrobial polymers on cellulosic fibers: A new strategy to develop bioactive textiles. Polymers for Advanced Technologies, 24(11), 1005–1010. https://doi.org/10.1002/pat.3176.CrossRef Gomes, A. P., Mano, J. F., Queiroz, J. A., & Gouveia, I. C. (2013). Layer-by-layer deposition of antimicrobial polymers on cellulosic fibers: A new strategy to develop bioactive textiles. Polymers for Advanced Technologies, 24(11), 1005–1010. https://​doi.​org/​10.​1002/​pat.​3176.CrossRef
Zurück zum Zitat Günay, K. A., Berthier, D. L., Jerri, H. A., Benczédi, D., Klok, H.-A., & Herrmann, A. (2017a). Selective peptide-mediated enhanced deposition of polymer fragrance delivery systems on human hair. ACS Applied Materials & Interfaces, 9(28), 24238–24249. https://doi.org/10.1021/acsami.7b06569.CrossRef Günay, K. A., Berthier, D. L., Jerri, H. A., Benczédi, D., Klok, H.-A., & Herrmann, A. (2017a). Selective peptide-mediated enhanced deposition of polymer fragrance delivery systems on human hair. ACS Applied Materials & Interfaces, 9(28), 24238–24249. https://​doi.​org/​10.​1021/​acsami.​7b06569.CrossRef
Zurück zum Zitat Hashemizad, S., Montazer, M., & Rashidi, A. (2012). Influence of the surface hydrolysis on the functionality of poly(ethylene terephthalate) fabric treated with nanotitanium dioxide. Journal of Applied Polymer Science, 125(2), 1176–1184. https://doi.org/10.1002/app.35381.CrossRef Hashemizad, S., Montazer, M., & Rashidi, A. (2012). Influence of the surface hydrolysis on the functionality of poly(ethylene terephthalate) fabric treated with nanotitanium dioxide. Journal of Applied Polymer Science, 125(2), 1176–1184. https://​doi.​org/​10.​1002/​app.​35381.CrossRef
Zurück zum Zitat Holmberg, S., Holmlund, P., Nicolas, R., Wilén, C.-E., Kallio, T., Sundholm, G., & Sundholm, F. (2004). Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerization. Macromolecules, 37(26), 9909–9915. https://doi.org/10.1021/ma0353641.CrossRef Holmberg, S., Holmlund, P., Nicolas, R., Wilén, C.-E., Kallio, T., Sundholm, G., & Sundholm, F. (2004). Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerization. Macromolecules, 37(26), 9909–9915. https://​doi.​org/​10.​1021/​ma0353641.CrossRef
Zurück zum Zitat Jahan Biglari, M., Mokhtari, J., Nouri, M., & Sarabi, A. A. (2014). Chemical vapor deposition of poly(3-alkylthiophene) nanoparticles on fabric: Chemical and electrochemical characterization. Journal of Applied Polymer Science, 131(17). https://doi.org/10.1002/app.40673. Jahan Biglari, M., Mokhtari, J., Nouri, M., & Sarabi, A. A. (2014). Chemical vapor deposition of poly(3-alkylthiophene) nanoparticles on fabric: Chemical and electrochemical characterization. Journal of Applied Polymer Science, 131(17). https://​doi.​org/​10.​1002/​app.​40673.
Zurück zum Zitat Kale, K. H., & Palaskar, S. S. (2012a). Plasma enhanced chemical vapor deposition of tetraethylorthosilicate and hexamethyldisiloxane on polyester fabrics under pulsed and continuous wave discharge. Journal of Applied Polymer Science, 125(5), 3996–4006. https://doi.org/10.1002/app.36601.CrossRef Kale, K. H., & Palaskar, S. S. (2012a). Plasma enhanced chemical vapor deposition of tetraethylorthosilicate and hexamethyldisiloxane on polyester fabrics under pulsed and continuous wave discharge. Journal of Applied Polymer Science, 125(5), 3996–4006. https://​doi.​org/​10.​1002/​app.​36601.CrossRef
Zurück zum Zitat Lan, D., Xiong, L., Wanyan, H., Yuan, Y., Fan, Q., Zeng, X., Chen, Y., & Cao, Z. (2017). Poly(glycidyl methacrylate) grafted to carbon fiber surface by RAFT polymerization for enhancing interface adhesion and mechanical properties of carbon fiber/epoxy composites. Polymers and Polymer Composites, 25(1), 113–118. https://doi.org/10.1177/096739111702500115.CrossRef Lan, D., Xiong, L., Wanyan, H., Yuan, Y., Fan, Q., Zeng, X., Chen, Y., & Cao, Z. (2017). Poly(glycidyl methacrylate) grafted to carbon fiber surface by RAFT polymerization for enhancing interface adhesion and mechanical properties of carbon fiber/epoxy composites. Polymers and Polymer Composites, 25(1), 113–118. https://​doi.​org/​10.​1177/​0967391117025001​15.CrossRef
Zurück zum Zitat Maráková, N., Humpolíček, P., Kašpárková, V., Capáková, Z., Martinková, L., Bober, P., Trchová, M., & Stejskal, J. (2017). Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Applied Surface Science, 396, 169–176. https://doi.org/10.1016/j.apsusc.2016.11.024.CrossRef Maráková, N., Humpolíček, P., Kašpárková, V., Capáková, Z., Martinková, L., Bober, P., Trchová, M., & Stejskal, J. (2017). Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Applied Surface Science, 396, 169–176. https://​doi.​org/​10.​1016/​j.​apsusc.​2016.​11.​024.CrossRef
Zurück zum Zitat Martel, B., Weltrowski, M., Ruffin, D., & Morcellet, M. (2002). Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: Study of the process parameters. Journal of Applied Polymer Science, 83(7), 1449–1456. https://doi.org/10.1002/app.2306.CrossRef Martel, B., Weltrowski, M., Ruffin, D., & Morcellet, M. (2002). Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: Study of the process parameters. Journal of Applied Polymer Science, 83(7), 1449–1456. https://​doi.​org/​10.​1002/​app.​2306.CrossRef
Zurück zum Zitat Mateos, A. J., Cain, A. A., & Grunlan, J. C. (2014). Large-scale continuous immersion system for layer-by-layer deposition of flame retardant and conductive nanocoatings on fabric. Industrial & Engineering Chemistry Research, 53(15), 6409–6416. https://doi.org/10.1021/ie500122u.CrossRef Mateos, A. J., Cain, A. A., & Grunlan, J. C. (2014). Large-scale continuous immersion system for layer-by-layer deposition of flame retardant and conductive nanocoatings on fabric. Industrial & Engineering Chemistry Research, 53(15), 6409–6416. https://​doi.​org/​10.​1021/​ie500122u.CrossRef
Zurück zum Zitat Mecerreyes, D., Jérôme, R., & Dubois, P. (1999). Novel macromolecular architectures based on aliphatic polyesters: Relevance of the “coordination-insertion” ring-opening polymerization. In J. G. Hilborn, P. Dubois, C. J. Hawker, et al. (Eds.), Macromolecular architectures (pp. 1–59). Berlin Heidelberg, Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-49196-1_1.CrossRef Mecerreyes, D., Jérôme, R., & Dubois, P. (1999). Novel macromolecular architectures based on aliphatic polyesters: Relevance of the “coordination-insertion” ring-opening polymerization. In J. G. Hilborn, P. Dubois, C. J. Hawker, et al. (Eds.), Macromolecular architectures (pp. 1–59). Berlin Heidelberg, Berlin, Heidelberg: Springer. https://​doi.​org/​10.​1007/​3-540-49196-1_​1.CrossRef
Zurück zum Zitat Periyasamy, S., Krishna Prasad, G., Chattopadhyay Sajal, K., Raja, A. S. M., Raj Kumar, K., & Jagadale, S. (2017). Micro-roughening of polyamide fabric using protease enzyme for improving adhesion strength of rubber-polyamide composite. Journal of Polymer Engineering, 37(3), 297–306. https://doi.org/10.1515/polyeng-2015-0541.CrossRef Periyasamy, S., Krishna Prasad, G., Chattopadhyay Sajal, K., Raja, A. S. M., Raj Kumar, K., & Jagadale, S. (2017). Micro-roughening of polyamide fabric using protease enzyme for improving adhesion strength of rubber-polyamide composite. Journal of Polymer Engineering, 37(3), 297–306. https://​doi.​org/​10.​1515/​polyeng-2015-0541.CrossRef
Zurück zum Zitat Struszczyk, M., Puszkarz, A., Wilbik-Hałgas, B., Cichecka, M., Litwa, P., Urbaniak-Domagała, W., & Krucinska, I. (2014). The surface modification of ballistic textiles using plasma-assisted chemical vapor deposition (PACVD). Textile Research Journal, 84(19), 2085–2093. https://doi.org/10.1177/0040517514528559.CrossRef Struszczyk, M., Puszkarz, A., Wilbik-Hałgas, B., Cichecka, M., Litwa, P., Urbaniak-Domagała, W., & Krucinska, I. (2014). The surface modification of ballistic textiles using plasma-assisted chemical vapor deposition (PACVD). Textile Research Journal, 84(19), 2085–2093. https://​doi.​org/​10.​1177/​0040517514528559​.CrossRef
Zurück zum Zitat Struszczyk, M. H., Urbaniak-Domagala, W., Puszkarz, A. K., Wilbik-Halgas, B., Cichecka, M., Sztajnowski, S., Puchalski, M., Mikias, M., & Krucinska, I. (2017). Structural changes in the PACVD-modified para-aramid, ballistic textiles during the accelerated aging. Fibres & Textiles in Eastern Europe, 25(1), 36–41. https://doi.org/10.5604/12303666.1227880.CrossRef Struszczyk, M. H., Urbaniak-Domagala, W., Puszkarz, A. K., Wilbik-Halgas, B., Cichecka, M., Sztajnowski, S., Puchalski, M., Mikias, M., & Krucinska, I. (2017). Structural changes in the PACVD-modified para-aramid, ballistic textiles during the accelerated aging. Fibres & Textiles in Eastern Europe, 25(1), 36–41. https://​doi.​org/​10.​5604/​12303666.​1227880.CrossRef
Zurück zum Zitat ter Schiphorst, J., van den Broek, M., de Koning, T., Murphy, J. N., Schenning, A. P. H. J., & Esteves, A. C. C. (2016). Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. Journal of Materials Chemistry A, 4(22), 8676–8681. https://doi.org/10.1039/c6ta00161k.CrossRef ter Schiphorst, J., van den Broek, M., de Koning, T., Murphy, J. N., Schenning, A. P. H. J., & Esteves, A. C. C. (2016). Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. Journal of Materials Chemistry A, 4(22), 8676–8681. https://​doi.​org/​10.​1039/​c6ta00161k.CrossRef
Zurück zum Zitat Tsubokawa, N., & Yoshihara, T. (1994). Modification of carbon whisker surface by the grafting of polyacetals: Cationic ring-opening polymerization of cyclic acetals initiated by acylium perchlorate groups introduced onto the surface. Composite Interfaces, 2(2), 71–80. https://doi.org/10.1163/156855494x00229.CrossRef Tsubokawa, N., & Yoshihara, T. (1994). Modification of carbon whisker surface by the grafting of polyacetals: Cationic ring-opening polymerization of cyclic acetals initiated by acylium perchlorate groups introduced onto the surface. Composite Interfaces, 2(2), 71–80. https://​doi.​org/​10.​1163/​156855494x00229.CrossRef
Zurück zum Zitat Tsubokawa, N., Hamada, H., & Sone, Y. (1989). Grafting of Polyesters from Carbon Fiber. Anionic ring-opening copolymerization of epoxides with cyclic acid anhydrides initiated by COOK groups on the surface of carbon fiber. Polymer-Plastics Technology and Engineering, 28(2), 201–214. https://doi.org/10.1080/03602558908048594.CrossRef Tsubokawa, N., Hamada, H., & Sone, Y. (1989). Grafting of Polyesters from Carbon Fiber. Anionic ring-opening copolymerization of epoxides with cyclic acid anhydrides initiated by COOK groups on the surface of carbon fiber. Polymer-Plastics Technology and Engineering, 28(2), 201–214. https://​doi.​org/​10.​1080/​0360255890804859​4.CrossRef
Zurück zum Zitat Wu, H.-L., Hou, X.-X., Branford-White, C., Sun, X.-Z., Tao, L., Um-I-Zahra, S., & Zhu, L.-M. (2015). Drug-loaded microparticles prepared by the one-step deposition of calcium carbonate/alginate onto cotton fabrics. Journal of Applied Polymer Science, 132(40). https://doi.org/10.1002/app.42618. Wu, H.-L., Hou, X.-X., Branford-White, C., Sun, X.-Z., Tao, L., Um-I-Zahra, S., & Zhu, L.-M. (2015). Drug-loaded microparticles prepared by the one-step deposition of calcium carbonate/alginate onto cotton fabrics. Journal of Applied Polymer Science, 132(40). https://​doi.​org/​10.​1002/​app.​42618.
Zurück zum Zitat Wu, X., Luo, Y., Liu, Q., Jiang, S., & Mu, G. (2019). Improved structure-stability and packing characters of crosslinked collagen fiber based film with casein, keratin and SPI. Journal of the Science of Food and Agriculture In press., 99, 4942–4951. https://doi.org/10.1002/jsfa.9726.CrossRef Wu, X., Luo, Y., Liu, Q., Jiang, S., & Mu, G. (2019). Improved structure-stability and packing characters of crosslinked collagen fiber based film with casein, keratin and SPI. Journal of the Science of Food and Agriculture In press., 99, 4942–4951. https://​doi.​org/​10.​1002/​jsfa.​9726.CrossRef
Zurück zum Zitat Xiong, L., Qin, X., Liang, H., Huang, S., & Lian, Z. (2017). Covalent functionalization of carbon fiber with poly(acrylamide) by reversible addition–fragmentation chain transfer polymerization for improving carbon fiber/epoxy interface. Polymer Composites, 38(1), 27–31. https://doi.org/10.1002/pc.23556.CrossRef Xiong, L., Qin, X., Liang, H., Huang, S., & Lian, Z. (2017). Covalent functionalization of carbon fiber with poly(acrylamide) by reversible addition–fragmentation chain transfer polymerization for improving carbon fiber/epoxy interface. Polymer Composites, 38(1), 27–31. https://​doi.​org/​10.​1002/​pc.​23556.CrossRef
Zurück zum Zitat Yoshikawa, S., Tsubokawa, N., Fujiki, K., & Sakamoto, M. (1998). Grafting of polymers with controlled molecular weight onto inorganic fiber surface by termination of living polymer cation with amino group on the surface. Composite Interfaces, 6(5), 395–407. https://doi.org/10.1163/156855499x00107.CrossRef Yoshikawa, S., Tsubokawa, N., Fujiki, K., & Sakamoto, M. (1998). Grafting of polymers with controlled molecular weight onto inorganic fiber surface by termination of living polymer cation with amino group on the surface. Composite Interfaces, 6(5), 395–407. https://​doi.​org/​10.​1163/​156855499x00107.CrossRef
Zurück zum Zitat Yoshioka-Tarver, M., Condon, B. D., Santiago Cintrón, M., Chang, S., Easson, M. W., Fortier, C. A., Madison, C. A., Bland, J. M., & Nguyen, T.-M. D. (2012). Enhanced flame retardant property of fiber reactive halogen-free organophosphonate. Industrial & Engineering Chemistry Research, 51(34), 11031–11037. https://doi.org/10.1021/ie300964g.CrossRef Yoshioka-Tarver, M., Condon, B. D., Santiago Cintrón, M., Chang, S., Easson, M. W., Fortier, C. A., Madison, C. A., Bland, J. M., & Nguyen, T.-M. D. (2012). Enhanced flame retardant property of fiber reactive halogen-free organophosphonate. Industrial & Engineering Chemistry Research, 51(34), 11031–11037. https://​doi.​org/​10.​1021/​ie300964g.CrossRef
Metadaten
Titel
Reactive Modification of Fiber Polymer Materials for Textile Applications
verfasst von
Avinash P. Manian
Tung Pham
Thomas Bechtold
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-43403-8_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.