Skip to main content

2019 | OriginalPaper | Buchkapitel

Recent Research Progress on Scaffolds for Bone Repair and Regeneration

verfasst von : Stefano Nobile, Lucio Nobile

Erschienen in: World Congress on Medical Physics and Biomedical Engineering 2018

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Currently, the major areas of research in nanotechnology with potential implications in ostearticular regeneration are: nano-based scaffold construction and modification to enhance biocompatibility, mechanical stability, and cellular attachment/survival. Nanotechnologies can be used to form scaffolds and to deliver drugs and growth factors in the lesion site in order to enhance bone formation. The aim of this paper is to give an overview of some recent advances of osteoarticular tissue engineering allowed by the application of nanotechnologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nobile L and Nobile S: Recent advances of nanotechnology in medicine and engineering. AIP Conference Proceedings 1736 (1), 020058/1-020058/4(2016). Nobile L and Nobile S: Recent advances of nanotechnology in medicine and engineering. AIP Conference Proceedings 1736 (1), 020058/1-020058/4(2016).
2.
Zurück zum Zitat Nobile S and Nobile L.: Nanotechnology for biomedical applicaitons: recent advances in neurosciences and bone tissue engineering, Polym Eng Sci 57, 644–650(2017). Nobile S and Nobile L.: Nanotechnology for biomedical applicaitons: recent advances in neurosciences and bone tissue engineering, Polym Eng Sci 57, 644–650(2017).
3.
Zurück zum Zitat Sophia Fox AJ, Bedi A, Rodeo SA: The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6), 461–8(2009). Sophia Fox AJ, Bedi A, Rodeo SA: The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6), 461–8(2009).
4.
Zurück zum Zitat Toyokawa N et al.: Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model. Arthroscopy 26(3), 375–83(2010). Toyokawa N et al.: Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model. Arthroscopy 26(3), 375–83(2010).
5.
Zurück zum Zitat Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT, Wan DC: Nanotechnology in bone tissue engineering. Nanomedicine 11(5), 1253–63(2015). Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT, Wan DC: Nanotechnology in bone tissue engineering. Nanomedicine 11(5), 1253–63(2015).
6.
Zurück zum Zitat Woo KM, Chen VJ, Jung HM, Kim TI, Shin HI, Baek JH, Ryoo HM, Ma PX: Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects. Tissue Eng Part A 15(8), 2155–62(2009). Woo KM, Chen VJ, Jung HM, Kim TI, Shin HI, Baek JH, Ryoo HM, Ma PX: Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects. Tissue Eng Part A 15(8), 2155–62(2009).
7.
Zurück zum Zitat Wang, Y.Z., Wang, B.C., Wang, G.X., Yin, T.Y., Yu, Q.S: A novel method for preparing electrospun fibers with nano-/micro-scale porous structures. Polym Bull 63:259–265(2009). Wang, Y.Z., Wang, B.C., Wang, G.X., Yin, T.Y., Yu, Q.S: A novel method for preparing electrospun fibers with nano-/micro-scale porous structures. Polym Bull 63:259–265(2009).
8.
Zurück zum Zitat Baker BM, Shah RP, Silverstein AM, Esterhai JL, Burdick JA, Mauck RL: Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. Proc Natl Acad Sci U S A. 109(35), 14176–14181(2012). Baker BM, Shah RP, Silverstein AM, Esterhai JL, Burdick JA, Mauck RL: Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. Proc Natl Acad Sci U S A. 109(35), 14176–14181(2012).
9.
Zurück zum Zitat Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 30;2:14017, 1–13(2014). Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 30;2:14017, 1–13(2014).
10.
Zurück zum Zitat Lu LX, Zhang XF, Wang YY, Ortiz L, Mao X, Jiang ZL, Xiao ZD, Huang NP: Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. ACS Appl Mater Interfaces 5(2), 319–330(2013). Lu LX, Zhang XF, Wang YY, Ortiz L, Mao X, Jiang ZL, Xiao ZD, Huang NP: Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. ACS Appl Mater Interfaces 5(2), 319–330(2013).
11.
Zurück zum Zitat Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X: Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. J Biomed Mater Res A 93(2), 753–62(2010). Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X: Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. J Biomed Mater Res A 93(2), 753–62(2010).
12.
Zurück zum Zitat Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou XB, Li S, DengY, He NY: Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5,17014(2017). Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou XB, Li S, DengY, He NY: Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5,17014(2017).
13.
Zurück zum Zitat Leach MK, Feng ZQ, Tuck SJ, Corey JM: Electrospinning fundamentals: optimizing solution and apparatus parameters. J Vis Exp 21(47), 2494(2011). Leach MK, Feng ZQ, Tuck SJ, Corey JM: Electrospinning fundamentals: optimizing solution and apparatus parameters. J Vis Exp 21(47), 2494(2011).
14.
Zurück zum Zitat Kuo YC, Hung SC, Hsu SH: The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells. Colloids Surf B Biointerfaces.122, 414–422(2014). Kuo YC, Hung SC, Hsu SH: The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells. Colloids Surf B Biointerfaces.122, 414–422(2014).
15.
Zurück zum Zitat Poologasundarampillai G et al.: Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomater 10(8), 3733–46(2014). Poologasundarampillai G et al.: Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomater 10(8), 3733–46(2014).
16.
Zurück zum Zitat Lai GJ, Shalumon KT, Chen SH, Chen JP: Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111, 288–97(2014). Lai GJ, Shalumon KT, Chen SH, Chen JP: Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111, 288–97(2014).
17.
Zurück zum Zitat Kim BR, Nguyen TB, Min YK, Lee BT: In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds. Tissue Eng Part A 20(23–24), 3279–89(2014). Kim BR, Nguyen TB, Min YK, Lee BT: In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds. Tissue Eng Part A 20(23–24), 3279–89(2014).
18.
Zurück zum Zitat Amiri B, Ghollasi M, Shahrousvand M, Kamali M, Salimi A: Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn2SiO4 bioceramic nanoparticles. Differentiation 92(4), 148–158(2016). Amiri B, Ghollasi M, Shahrousvand M, Kamali M, Salimi A: Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn2SiO4 bioceramic nanoparticles. Differentiation 92(4), 148–158(2016).
19.
Zurück zum Zitat van de Weert M, Hennink WE, Jiskoot W: Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res 17(10), 1159–67(2000). van de Weert M, Hennink WE, Jiskoot W: Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res 17(10), 1159–67(2000).
20.
Zurück zum Zitat Nie H, Ho ML, Wang CK, Wang CH, Fu YC: BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials 30(5):892–901(2009). Nie H, Ho ML, Wang CK, Wang CH, Fu YC: BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials 30(5):892–901(2009).
21.
Zurück zum Zitat Silva E et al.: PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Mater Sci Eng C Mater Biol Appl 73, 31–39(2017). Silva E et al.: PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Mater Sci Eng C Mater Biol Appl 73, 31–39(2017).
22.
Zurück zum Zitat Radha G, Balakumar S, Balaji Venkatesan, Elangovan Vellaichamy: A novel nano-hydroxyapatite — PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties. Materials Science and Engineering: C 75, 221–228(2017). Radha G, Balakumar S, Balaji Venkatesan, Elangovan Vellaichamy: A novel nano-hydroxyapatite — PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties. Materials Science and Engineering: C 75, 221–228(2017).
23.
Zurück zum Zitat Dong W, Hou L, Li T, Gong Z, Huang H, Wang G, Chen X, Li X: A dual role of graphene oxide sheet deposition on titanate nanowire scaffolds for osteo-implantation: Mechanical hardener and surface activity regulator. Scientific Reports 5, Article number: 18266 (2015). Dong W, Hou L, Li T, Gong Z, Huang H, Wang G, Chen X, Li X: A dual role of graphene oxide sheet deposition on titanate nanowire scaffolds for osteo-implantation: Mechanical hardener and surface activity regulator. Scientific Reports 5, Article number: 18266 (2015).
24.
Zurück zum Zitat Schimke NM et al.: Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.Nanomed.: Nanotechnol Biol Med 12 (3), 823–833(2016). Schimke NM et al.: Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.Nanomed.: Nanotechnol Biol Med 12 (3), 823–833(2016).
25.
Zurück zum Zitat Sagar N et al.: Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization. Materials Science and Engineering: C 69, 700–714(2016). Sagar N et al.: Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization. Materials Science and Engineering: C 69, 700–714(2016).
26.
Zurück zum Zitat Samadikuchaksaraei A et al.: Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. J Biomed Mater Res A. 104(8), 2001–10(2016). Samadikuchaksaraei A et al.: Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. J Biomed Mater Res A. 104(8), 2001–10(2016).
27.
Zurück zum Zitat Çakmak S, Çakmak AS, Kaplan DL, Gümüşderelioğlu M: A Silk Fibroin and Peptide Amphiphile-Based Co-Culture Model for Osteochondral Tissue Engineering. Macromol Biosci 16(8), 1212–26(2016). Çakmak S, Çakmak AS, Kaplan DL, Gümüşderelioğlu M: A Silk Fibroin and Peptide Amphiphile-Based Co-Culture Model for Osteochondral Tissue Engineering. Macromol Biosci 16(8), 1212–26(2016).
28.
Zurück zum Zitat Dodel M et al.: Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration. Biologicals 46, 99–107(2017). Dodel M et al.: Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration. Biologicals 46, 99–107(2017).
29.
Zurück zum Zitat Wang J et al.: Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord. Mater Sci Eng C Mater Biol Appl 70, 637–645(2017). Wang J et al.: Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord. Mater Sci Eng C Mater Biol Appl 70, 637–645(2017).
30.
Zurück zum Zitat Maughan EF et al.:A comparison of tracheal scaffold strategies for pediatric transplantation in a rabbit model. Laryngoscope 127(12), E449–E457(2017). Maughan EF et al.:A comparison of tracheal scaffold strategies for pediatric transplantation in a rabbit model. Laryngoscope 127(12), E449–E457(2017).
Metadaten
Titel
Recent Research Progress on Scaffolds for Bone Repair and Regeneration
verfasst von
Stefano Nobile
Lucio Nobile
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-9023-3_29

Neuer Inhalt