Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Receptivity and Instability

verfasst von : Tapan K. Sengupta, Swagata Bhaumik

Erschienen in: DNS of Wall-Bounded Turbulent Flows

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, linear stability and receptivity analysis of the zero-pressure gradient (ZPG) boundary layer, under the parallel flow assumption, is discussed. This assumption implies that the equilibrium flow quantities do not grow in the streamwise direction and requires solving the Orr-Sommerfeld equation (OSE) to study evolution of disturbance field in a linearized analysis. The concept of the spatio-temporal wave-front (STWF) originates from the receptivity analysis with the OSE solved for the response field. First, the simplified description of equilibrium flow in terms of a similarity solution for ZPG boundary layer is presented. Following which the OSE is derived for boundary layers, making use of the parallel flow approximation (Drazin and Reid, Hydrodynamic stability, Cambridge University Press, UK, 1981, [19], Sengupta, Instabilities of flows and transition to turbulence, CRC Press, Taylor & Francis Group, Florida, USA, 2012, [53]). This equation have been solved for the ZPG boundary layer using analytical approaches in Heisenberg (Annalen der Physik Leipzig, 379:577–627, 1924, [28]), Schlichting (Nach Gesell d Wiss z G\(\ddot{\mathrm{o}}\)tt., MPK 42:181–208, 1933, [48]), Tollmien (NACA TM 609, 1931, [71]). We instead introduce the compound matrix method, a robust method for stiff differential equation useful for the OSE. Finally, the receptivity analysis of the ZPG boundary layer flow is provided, with results taken from Sengupta et al. (Phys Rev Lett, 96(22):224504, 2006, [61]), Sengupta et al. (Phys Fluids, 18:094101, 2006, [62]). The unique feature of the materials in this chapter is the topic of instability of mixed convection flows for which two theorems are enunciated for an inviscid linear mechanism, based on materials extensively taken from Sengupta et al., Physics of Fluids, 25, 094102 (2013).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
[Reproduced from Direct numerical simulation of transitional mixed convection flows: Viscous and inviscid instability mechanism. Sengupta et al., Physics of Fluids, 25, 094102 (2013), with the permission of AIP Publishing.]
 
Literatur
1.
Zurück zum Zitat Allen, L., & Bridges, T. J. (2002). Numerical exterior algebra and the compound matrix method. Numerische Mathematik, 92, 197–232.MathSciNetCrossRef Allen, L., & Bridges, T. J. (2002). Numerical exterior algebra and the compound matrix method. Numerische Mathematik, 92, 197–232.MathSciNetCrossRef
2.
Zurück zum Zitat Alizard, F., & Robinet, J. (2007). Spatially convective global modes in a boundary layer. Physics of Fluids, 19, 114105.CrossRef Alizard, F., & Robinet, J. (2007). Spatially convective global modes in a boundary layer. Physics of Fluids, 19, 114105.CrossRef
3.
Zurück zum Zitat Arfken, G. (1985). Mathematical methods for physicists (3rd ed.). Orlando: Academic Press.CrossRef Arfken, G. (1985). Mathematical methods for physicists (3rd ed.). Orlando: Academic Press.CrossRef
4.
Zurück zum Zitat Barkley, D., Gomes, M. G. M., & Henderson, R. D. (2002). Three-dimensional instability in flow over a backward-facing step. Journal of Fluid Mechanics, 473, 167–190.MathSciNetCrossRef Barkley, D., Gomes, M. G. M., & Henderson, R. D. (2002). Three-dimensional instability in flow over a backward-facing step. Journal of Fluid Mechanics, 473, 167–190.MathSciNetCrossRef
5.
Zurück zum Zitat Barkley, D., Blackburn, H. M., & Sherwin, S. J. (2008). Direct optimal growth analysis for timesteppers. International Journal for Numerical Methods in Fluids, 57, 1435–1458.MathSciNetCrossRef Barkley, D., Blackburn, H. M., & Sherwin, S. J. (2008). Direct optimal growth analysis for timesteppers. International Journal for Numerical Methods in Fluids, 57, 1435–1458.MathSciNetCrossRef
6.
Zurück zum Zitat Bender, C. M., & Orszag, S. A. (1987). Advanced mathematical methods for scientists and engineers. Singapore: McGraw Hill Book Co., International Edition. Bender, C. M., & Orszag, S. A. (1987). Advanced mathematical methods for scientists and engineers. Singapore: McGraw Hill Book Co., International Edition.
7.
Zurück zum Zitat Bhaumik, S. (2013). Direct numerical simulation of inhomogeneous transitional and turbulent flows. Ph. D. thesis, I. I. T. Kanpur Bhaumik, S. (2013). Direct numerical simulation of inhomogeneous transitional and turbulent flows. Ph. D. thesis, I. I. T. Kanpur
8.
Zurück zum Zitat Bhumkar, Y. G. (2011). High performance computing of bypass transition. Ph.D. thesis, I. I. T. Kanpur Bhumkar, Y. G. (2011). High performance computing of bypass transition. Ph.D. thesis, I. I. T. Kanpur
9.
Zurück zum Zitat Bhaumik, S., & Sengupta, T. K. (2014). Precursor of transition to turbulence: Spatiotemporal wave front. Physical Review E, 89(4), 043018.CrossRef Bhaumik, S., & Sengupta, T. K. (2014). Precursor of transition to turbulence: Spatiotemporal wave front. Physical Review E, 89(4), 043018.CrossRef
10.
Zurück zum Zitat Bhaumik, S., & Sengupta, T. K. (2017). Impulse response and spatio-temporal wave-packets: The common feature of rogue waves, tsunami and transition to turbulence. Physics of Fluids, 29, 124103.CrossRef Bhaumik, S., & Sengupta, T. K. (2017). Impulse response and spatio-temporal wave-packets: The common feature of rogue waves, tsunami and transition to turbulence. Physics of Fluids, 29, 124103.CrossRef
11.
Zurück zum Zitat Blackburn, H. M., Barkley, D., & Sherwin, S. J. (2008). Convective instability and transient growth in flow over a backward-facing step. Journal of Fluid Mechanics, 603, 271–304.MathSciNetCrossRef Blackburn, H. M., Barkley, D., & Sherwin, S. J. (2008). Convective instability and transient growth in flow over a backward-facing step. Journal of Fluid Mechanics, 603, 271–304.MathSciNetCrossRef
12.
Zurück zum Zitat Brandt, L., & Henningson, D. S. (2002). Transition of streamwise streaks in zero-pressure-gradient boundary layers. Journal of Fluid Mechanics, 472, 229–261.MathSciNetCrossRef Brandt, L., & Henningson, D. S. (2002). Transition of streamwise streaks in zero-pressure-gradient boundary layers. Journal of Fluid Mechanics, 472, 229–261.MathSciNetCrossRef
13.
Zurück zum Zitat Brewstar, R. A., & Gebhart, B. (1991). Instability and disturbance amplification in a mixed-convection boundary layer. Journal of Fluid Mechanics, 229, 115–133.CrossRef Brewstar, R. A., & Gebhart, B. (1991). Instability and disturbance amplification in a mixed-convection boundary layer. Journal of Fluid Mechanics, 229, 115–133.CrossRef
14.
Zurück zum Zitat Cebeci, T., & Bradshaw, P. (1977). Momentum transfer in boundary layers. Washington, DC: Hemisphere Publishing Corporation.MATH Cebeci, T., & Bradshaw, P. (1977). Momentum transfer in boundary layers. Washington, DC: Hemisphere Publishing Corporation.MATH
15.
Zurück zum Zitat Chen, T. S., & Moutsoglu, A. (1979). Wave instability of mixed convection flow on inclined surfaces. Numerical Heat Transfer, 2, 497–509.CrossRef Chen, T. S., & Moutsoglu, A. (1979). Wave instability of mixed convection flow on inclined surfaces. Numerical Heat Transfer, 2, 497–509.CrossRef
16.
Zurück zum Zitat Chen, T. S., & Mucoglu, A. (1979). Wave instability of mixed convection flow over a horizontal flat plate. International Journal of Heat and Mass Transfer, 22, 185–196.CrossRef Chen, T. S., & Mucoglu, A. (1979). Wave instability of mixed convection flow over a horizontal flat plate. International Journal of Heat and Mass Transfer, 22, 185–196.CrossRef
17.
Zurück zum Zitat Chen, T. S., Sparrow, E. M., & Mucoglu, A. (1977). Mixed convection in boundary layer flow on a horizontal plate. ASME Journal of Heat Transfer, 99, 66–71.CrossRef Chen, T. S., Sparrow, E. M., & Mucoglu, A. (1977). Mixed convection in boundary layer flow on a horizontal plate. ASME Journal of Heat Transfer, 99, 66–71.CrossRef
18.
Zurück zum Zitat Chomaz, J. M. (2005). Global instabilities in spatially developing flows: Non-normality and nonlinearity. Annual Review of Fluid Mechanics, 37, 357–392.MathSciNetCrossRef Chomaz, J. M. (2005). Global instabilities in spatially developing flows: Non-normality and nonlinearity. Annual Review of Fluid Mechanics, 37, 357–392.MathSciNetCrossRef
19.
Zurück zum Zitat Drazin, P. G., & Reid, W. H. (1981). Hydrodynamic stability. UK: Cambridge University Press.MATH Drazin, P. G., & Reid, W. H. (1981). Hydrodynamic stability. UK: Cambridge University Press.MATH
20.
Zurück zum Zitat Eckert, E. R. G. & Soehngen, E. (1951). Interferometric studies on the stability and transition to turbulence in a free-convection boundary-layer. Proceedings of the General Discussion on Heat Transfer, ASME and IME London (Vol. 321) (1951) Eckert, E. R. G. & Soehngen, E. (1951). Interferometric studies on the stability and transition to turbulence in a free-convection boundary-layer. Proceedings of the General Discussion on Heat Transfer, ASME and IME London (Vol. 321) (1951)
21.
Zurück zum Zitat Eiseman, P. R. (1985). Grid generation for fluid mechanics computation. Annual Review of Fluid Mechanics, 17, 487–522.CrossRef Eiseman, P. R. (1985). Grid generation for fluid mechanics computation. Annual Review of Fluid Mechanics, 17, 487–522.CrossRef
22.
Zurück zum Zitat Fasel, H., & Konzelmann, U. (1990). Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations. Journal of Fluid Mechanics, 221, 311–347.CrossRef Fasel, H., & Konzelmann, U. (1990). Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations. Journal of Fluid Mechanics, 221, 311–347.CrossRef
23.
Zurück zum Zitat Gaster, M. (1974). On the effect of boundary-layer growth on flow stability. Journal of Fluid Mechanics, 66(3), 465–480.CrossRef Gaster, M. (1974). On the effect of boundary-layer growth on flow stability. Journal of Fluid Mechanics, 66(3), 465–480.CrossRef
24.
Zurück zum Zitat Gebhart, B., Jaluria, Y., Mahajan, R. L., & Sammakia, B. (1988). Buoyancy-induced flows and transport. Washington, DC: Hemisphere Publications. Gebhart, B., Jaluria, Y., Mahajan, R. L., & Sammakia, B. (1988). Buoyancy-induced flows and transport. Washington, DC: Hemisphere Publications.
25.
Zurück zum Zitat Gilpin, R. R., Imura, H., & Cheng, K. C. (1978). Experiments on the onset of longitudinal vortices in horizontal Blasius flow heated from below. ASME Journal of Heat Transfer, 100, 71–77.CrossRef Gilpin, R. R., Imura, H., & Cheng, K. C. (1978). Experiments on the onset of longitudinal vortices in horizontal Blasius flow heated from below. ASME Journal of Heat Transfer, 100, 71–77.CrossRef
26.
Zurück zum Zitat Haaland, S. E., & Sparrow, E. M. (1973). Vortex instability of natural convection flows on inclined surfaces. International Journal of Heat Mass Transfer, 16, 2355–2367.CrossRef Haaland, S. E., & Sparrow, E. M. (1973). Vortex instability of natural convection flows on inclined surfaces. International Journal of Heat Mass Transfer, 16, 2355–2367.CrossRef
27.
Zurück zum Zitat Hall, P., & Morris, H. (1992). On the instability of boundary layers on heated flat plates. Journal of Fluid Mechanics, 245, 367–400.MathSciNetCrossRef Hall, P., & Morris, H. (1992). On the instability of boundary layers on heated flat plates. Journal of Fluid Mechanics, 245, 367–400.MathSciNetCrossRef
28.
Zurück zum Zitat Heisenberg, W. (1924). \(\ddot{\rm U}\)ber stabilit\({\ddot{\rm a}}\)t und turbulenz von fl\({\ddot{\rm u}}\)ssigkeitsstr\({\ddot{\rm o}}\)men. Annalen der Physik Leipzig, 379, 577–627 (Translated as ‘On stability and turbulence of fluid flows’. NACA Tech. Memo. Wash. No 1291 1951) Heisenberg, W. (1924). \(\ddot{\rm U}\)ber stabilit\({\ddot{\rm a}}\)t und turbulenz von fl\({\ddot{\rm u}}\)ssigkeitsstr\({\ddot{\rm o}}\)men. Annalen der Physik Leipzig, 379, 577–627 (Translated as ‘On stability and turbulence of fluid flows’. NACA Tech. Memo. Wash. No 1291 1951)
29.
Zurück zum Zitat Iyer, P. A., & Kelly, R. E. (1974). The instability of the laminar free convection flow induced by a heated, inclined plate. International Journal of Hear Mass Transfer, 17, 517–525.CrossRef Iyer, P. A., & Kelly, R. E. (1974). The instability of the laminar free convection flow induced by a heated, inclined plate. International Journal of Hear Mass Transfer, 17, 517–525.CrossRef
30.
Zurück zum Zitat Jain, M. K., Iyengar, S. R. K. & Jain, R. K. (2003). Numerical methods for scientific and engineering computation. New Delhi: New Age International Jain, M. K., Iyengar, S. R. K. & Jain, R. K. (2003). Numerical methods for scientific and engineering computation. New Delhi: New Age International
31.
Zurück zum Zitat Kaiktsis, L., Karniadakis, G. M., & Orszag, S. A. (1991). Onset of three-dimensionality, equibria and early transition in flow over a backward-facing step. Journal of Fluid Mechanics, 231, 501–528.CrossRef Kaiktsis, L., Karniadakis, G. M., & Orszag, S. A. (1991). Onset of three-dimensionality, equibria and early transition in flow over a backward-facing step. Journal of Fluid Mechanics, 231, 501–528.CrossRef
32.
Zurück zum Zitat Kaiktsis, L., Karniadakis, G. M., & Orszag, S. A. (1996). Unsteadiness and convective instabilities in two-dimensional flow over a backward-facing step. Journal of Fluid Mechanics, 321, 157–187.CrossRef Kaiktsis, L., Karniadakis, G. M., & Orszag, S. A. (1996). Unsteadiness and convective instabilities in two-dimensional flow over a backward-facing step. Journal of Fluid Mechanics, 321, 157–187.CrossRef
33.
Zurück zum Zitat Kloker, M., Konzelmann, U., & Fasel, H. (1993). Outflow boundary conditions for spatial Navier-Stokes simulations of transitional boundary layers. AIAA Journal, 31, 620.CrossRef Kloker, M., Konzelmann, U., & Fasel, H. (1993). Outflow boundary conditions for spatial Navier-Stokes simulations of transitional boundary layers. AIAA Journal, 31, 620.CrossRef
34.
Zurück zum Zitat Kreyszig, E. (1999). Advanced engineering mathematics. Singapore: Wiley.MATH Kreyszig, E. (1999). Advanced engineering mathematics. Singapore: Wiley.MATH
35.
Zurück zum Zitat Leal, L. G. (1973). Steady separated flow in a linearly decelerated free stream. Journal of Fluid Mechanics, 59, 513–535.CrossRef Leal, L. G. (1973). Steady separated flow in a linearly decelerated free stream. Journal of Fluid Mechanics, 59, 513–535.CrossRef
36.
Zurück zum Zitat Liu, Z., & Liu, C. (1994). Fourth order finite difference and multigrid methods for modeling instabilities in flat plate boundary layer-2D and 3D approaches. Computers and Fluids, 23, 955–982.MathSciNetCrossRef Liu, Z., & Liu, C. (1994). Fourth order finite difference and multigrid methods for modeling instabilities in flat plate boundary layer-2D and 3D approaches. Computers and Fluids, 23, 955–982.MathSciNetCrossRef
37.
Zurück zum Zitat Lloyd, J. R., & Sparrow, E. M. (1970). On the instability of natural convection flow on inclined plates. Journal of Fluid Mechanics, 42, 465–470.CrossRef Lloyd, J. R., & Sparrow, E. M. (1970). On the instability of natural convection flow on inclined plates. Journal of Fluid Mechanics, 42, 465–470.CrossRef
38.
Zurück zum Zitat Lord, R. (1880). On the stability or instability of certain fluid motions. Scientific Papers, 1, 361–371. Lord, R. (1880). On the stability or instability of certain fluid motions. Scientific Papers, 1, 361–371.
39.
Zurück zum Zitat Marquet, O., Sipp, D., Chomaz, J. M., & Jacquin, L. (2008). Amplifier and resonator dynamics of a low Reynolds-number recirculation bubble in a global framework. Journal of Fluid Mechanics, 605, 429–443.CrossRef Marquet, O., Sipp, D., Chomaz, J. M., & Jacquin, L. (2008). Amplifier and resonator dynamics of a low Reynolds-number recirculation bubble in a global framework. Journal of Fluid Mechanics, 605, 429–443.CrossRef
40.
Zurück zum Zitat Moutsoglu, A., Chen, T. S., & Cheng, K. C. (1981). Vortex instability of mixed convection flow over a horizontal flat plate. ASME Journal of Heat Transfer, 103, 257–261.CrossRef Moutsoglu, A., Chen, T. S., & Cheng, K. C. (1981). Vortex instability of mixed convection flow over a horizontal flat plate. ASME Journal of Heat Transfer, 103, 257–261.CrossRef
41.
Zurück zum Zitat Mucoglu, A., & Chen, T. S. (1978). Wave instability of mixed convection flow along a vertical flat plate. Numerical Heat Transfer, 1, 267–283.CrossRef Mucoglu, A., & Chen, T. S. (1978). Wave instability of mixed convection flow along a vertical flat plate. Numerical Heat Transfer, 1, 267–283.CrossRef
42.
Zurück zum Zitat Mureithi, E. W., & Denier, J. P. (2010). Absolute-convective instability of mixed forced-free convection boundary layers. Fluid Dynamics Research, 372, 517–534.MathSciNetMATH Mureithi, E. W., & Denier, J. P. (2010). Absolute-convective instability of mixed forced-free convection boundary layers. Fluid Dynamics Research, 372, 517–534.MathSciNetMATH
43.
Zurück zum Zitat Ng, B. S., & Reid, W. H. (1980). On the numerical solution of the Orr-Sommerfeld problem: Asymptotic initial conditions for shooting method. Journal of Computational Physics, 38, 275–293.MathSciNetCrossRef Ng, B. S., & Reid, W. H. (1980). On the numerical solution of the Orr-Sommerfeld problem: Asymptotic initial conditions for shooting method. Journal of Computational Physics, 38, 275–293.MathSciNetCrossRef
44.
Zurück zum Zitat Ng, B. S., & Reid, W. H. (1985). The compound matrix method for ordinary differential systems. Journal of Computational Physics, 58, 209–228.MathSciNetCrossRef Ng, B. S., & Reid, W. H. (1985). The compound matrix method for ordinary differential systems. Journal of Computational Physics, 58, 209–228.MathSciNetCrossRef
45.
Zurück zum Zitat Rajpoot, M. K., Sengupta, T. K., & Dutt, P. K. (2010). Optimal time advancing dispersion relation preserving schemes. Journal of Computational Physics, 229(10), 3623–3651.MathSciNetCrossRef Rajpoot, M. K., Sengupta, T. K., & Dutt, P. K. (2010). Optimal time advancing dispersion relation preserving schemes. Journal of Computational Physics, 229(10), 3623–3651.MathSciNetCrossRef
46.
Zurück zum Zitat Saric, W. S., & Nayfeh, A. H. (1975). Nonparallel stability of boundary-layer flows. Physics of Fluids, 18(8), 945–950.CrossRef Saric, W. S., & Nayfeh, A. H. (1975). Nonparallel stability of boundary-layer flows. Physics of Fluids, 18(8), 945–950.CrossRef
47.
Zurück zum Zitat Schlatter, P., & \(\ddot{O}rl\ddot{u}\), R. (2012). Turbulent boundary layers at moderate Reynolds numbers. Journal of Fluid Mechanics, 710, 5–34.CrossRef Schlatter, P., & \(\ddot{O}rl\ddot{u}\), R. (2012). Turbulent boundary layers at moderate Reynolds numbers. Journal of Fluid Mechanics, 710, 5–34.CrossRef
48.
Zurück zum Zitat Schlichting, H. (1933). Zur entstehung der turbulenz bei der plattenstr\({\ddot{\rm o}}\)mung. Nach. Gesell. d. Wiss. z. G\({\ddot{\rm o}}\)tt., MPK,42, 181–208 Schlichting, H. (1933). Zur entstehung der turbulenz bei der plattenstr\({\ddot{\rm o}}\)mung. Nach. Gesell. d. Wiss. z. G\({\ddot{\rm o}}\)tt., MPK,42, 181–208
49.
Zurück zum Zitat Schneider, W. (1979). A similarity solution for combined forced and free convection flow over a horizontal plate. International Journal of Heat and Mass Transfer, 22, 1401–1406.CrossRef Schneider, W. (1979). A similarity solution for combined forced and free convection flow over a horizontal plate. International Journal of Heat and Mass Transfer, 22, 1401–1406.CrossRef
50.
Zurück zum Zitat Schubauer, G. B., & Skramstad, H. K. (1947). Laminar boundary layer oscillations and the stability of laminar flow. Journal of Aerosol Science, 14(2), 69–78. Schubauer, G. B., & Skramstad, H. K. (1947). Laminar boundary layer oscillations and the stability of laminar flow. Journal of Aerosol Science, 14(2), 69–78.
51.
Zurück zum Zitat Sengupta T. K. (1990). Receptivity of a growing boundary layer to surface excitation. (Unpublished manuscript). Sengupta T. K. (1990). Receptivity of a growing boundary layer to surface excitation. (Unpublished manuscript).
52.
Zurück zum Zitat Sengupta, T. K. (1991). Impulse response of laminar boundary layer and receptivity. In C. Taylor (Ed.), Proceedings of the 7th International Conference Numerical Methods in Laminar and Turbulent Layers. Stanford University Sengupta, T. K. (1991). Impulse response of laminar boundary layer and receptivity. In C. Taylor (Ed.), Proceedings of the 7th International Conference Numerical Methods in Laminar and Turbulent Layers. Stanford University
53.
Zurück zum Zitat Sengupta, T. K. (2012). Instabilities of flows and transition to turbulence. Florida, USA: CRC Press, Taylor & Francis Group. Sengupta, T. K. (2012). Instabilities of flows and transition to turbulence. Florida, USA: CRC Press, Taylor & Francis Group.
54.
Zurück zum Zitat Sengupta, T. K. (2013). High accuracy computing methods: Fluid flows and wave phenomenon. USA: Cambridge University Press.CrossRef Sengupta, T. K. (2013). High accuracy computing methods: Fluid flows and wave phenomenon. USA: Cambridge University Press.CrossRef
55.
Zurück zum Zitat Sengupta, T. K., & Bhaumik, S. (2011). Onset of turbulence from the receptivity stage of fluid flows. Physical Review Letters, 154501, 1–5. Sengupta, T. K., & Bhaumik, S. (2011). Onset of turbulence from the receptivity stage of fluid flows. Physical Review Letters, 154501, 1–5.
56.
Zurück zum Zitat Sengupta, T. K., & Venkatasubbaiah, K. (2006). Spatial stability for mixed convection boundary layer over a heated horizontal plate. Studies in Applied Mathematics, 117, 265–298.MathSciNetCrossRef Sengupta, T. K., & Venkatasubbaiah, K. (2006). Spatial stability for mixed convection boundary layer over a heated horizontal plate. Studies in Applied Mathematics, 117, 265–298.MathSciNetCrossRef
57.
Zurück zum Zitat Sengupta, T. K., Ballav, M., & Nijhawan, S. (1994). Generation of Tollmien-Schlichting waves by harmonic excitation. Physics of Fluids, 6(3), 1213–1222.CrossRef Sengupta, T. K., Ballav, M., & Nijhawan, S. (1994). Generation of Tollmien-Schlichting waves by harmonic excitation. Physics of Fluids, 6(3), 1213–1222.CrossRef
58.
Zurück zum Zitat Sengupta, T. K., Bhaumik, S., Singh, V., & Shukl, S. (2009). Nonlinear and nonparallel receptivity of zero-pressure gradient boundary layer. International Journal of Emerging Multidisciplinary Fluid Sciences, 1, 19–35.CrossRef Sengupta, T. K., Bhaumik, S., Singh, V., & Shukl, S. (2009). Nonlinear and nonparallel receptivity of zero-pressure gradient boundary layer. International Journal of Emerging Multidisciplinary Fluid Sciences, 1, 19–35.CrossRef
59.
Zurück zum Zitat Sengupta, T. K., Chattopadhyay, M., Wang, Z. Y., & Yeo, K. S. (2002). By-pass mechanism of transition to turbulence. Journal of Fluids and Structures, 16, 15–29.CrossRef Sengupta, T. K., Chattopadhyay, M., Wang, Z. Y., & Yeo, K. S. (2002). By-pass mechanism of transition to turbulence. Journal of Fluids and Structures, 16, 15–29.CrossRef
60.
Zurück zum Zitat Sengupta, T. K., De, S., & Sarkar, S. (2003). Vortex-induced instability of an incompressible wall-bounded shear layer. Journal of Fluid Mechanics, 493, 277–286.MathSciNetCrossRef Sengupta, T. K., De, S., & Sarkar, S. (2003). Vortex-induced instability of an incompressible wall-bounded shear layer. Journal of Fluid Mechanics, 493, 277–286.MathSciNetCrossRef
61.
Zurück zum Zitat Sengupta, T. K., Rao, A. K., & Venkatasubbaiah, K. (2006). Spatiotemporal growing wave fronts in spatially stable boundary layers. Physical Review Letters, 96(22), 224504.CrossRef Sengupta, T. K., Rao, A. K., & Venkatasubbaiah, K. (2006). Spatiotemporal growing wave fronts in spatially stable boundary layers. Physical Review Letters, 96(22), 224504.CrossRef
62.
Zurück zum Zitat Sengupta, T. K., Rao, A. K., & Venkatasubbaiah, K. (2006). Spatiotemporal growth of disturbances in a boundary layer and energy based receptivity analysis. Physics of Fluids, 18, 094101.MathSciNetCrossRef Sengupta, T. K., Rao, A. K., & Venkatasubbaiah, K. (2006). Spatiotemporal growth of disturbances in a boundary layer and energy based receptivity analysis. Physics of Fluids, 18, 094101.MathSciNetCrossRef
63.
Zurück zum Zitat Sengupta, T. K., Sircar, S. K., & Dipankar, A. (2006). High accuracy compact schemes for DNS and acoustics. Journal of Scientific Computing, 26(2), 151–193.MathSciNetCrossRef Sengupta, T. K., Sircar, S. K., & Dipankar, A. (2006). High accuracy compact schemes for DNS and acoustics. Journal of Scientific Computing, 26(2), 151–193.MathSciNetCrossRef
64.
Zurück zum Zitat Sengupta, T. K., Unnikrishnnan, S., Bhaumik, S., Singh, P., & Usman, S. (2011). Linear spatial stability analysis of mixed convection boundary layer over a heated plate. Program in Applied Mathematics, 1(1), 71–89. Sengupta, T. K., Unnikrishnnan, S., Bhaumik, S., Singh, P., & Usman, S. (2011). Linear spatial stability analysis of mixed convection boundary layer over a heated plate. Program in Applied Mathematics, 1(1), 71–89.
65.
Zurück zum Zitat Sengupta, T. K., Bhaumik, S., & Bhumkar, Y. (2012). Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Physical Review E, 85(2), 026308.CrossRef Sengupta, T. K., Bhaumik, S., & Bhumkar, Y. (2012). Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Physical Review E, 85(2), 026308.CrossRef
66.
Zurück zum Zitat Sengupta, T. K., Bhaumik, S., & Bose, R. (2013). Direct numerical simulation of transitional mixed convection flows: Viscous and inviscid instability mechanisms. Physics of Fluids, 25, 094102.CrossRef Sengupta, T. K., Bhaumik, S., & Bose, R. (2013). Direct numerical simulation of transitional mixed convection flows: Viscous and inviscid instability mechanisms. Physics of Fluids, 25, 094102.CrossRef
67.
Zurück zum Zitat Shaukatullah, H., & Gebhart, B. (1978). An experimental investigation of natural convection flow on an inclined surface. International Journal of Heat and Mass Transfer, 21, 1481–1490.CrossRef Shaukatullah, H., & Gebhart, B. (1978). An experimental investigation of natural convection flow on an inclined surface. International Journal of Heat and Mass Transfer, 21, 1481–1490.CrossRef
68.
Zurück zum Zitat Sparrow, E. M., & Husar, R. B. (1969). Longitudinal vortices in natural convection flow on inclined plates. Journal of Fluid Mechanics, 37, 251–255.CrossRef Sparrow, E. M., & Husar, R. B. (1969). Longitudinal vortices in natural convection flow on inclined plates. Journal of Fluid Mechanics, 37, 251–255.CrossRef
69.
Zurück zum Zitat Sparrow, E. M., & Minkowycz, W. J. (1962). Buoyancy effects on horizontal boundary-layer flow and heat transfer. International Journal of Heat and Mass Transfer, 5, 505–511.CrossRef Sparrow, E. M., & Minkowycz, W. J. (1962). Buoyancy effects on horizontal boundary-layer flow and heat transfer. International Journal of Heat and Mass Transfer, 5, 505–511.CrossRef
70.
Zurück zum Zitat Skote, M., Haritonidis, J. H., & Henningson, D. S. (2002). Varicose instabilities in turbulent boundary layers. Physics of Fluids, 14, 2309–2323.CrossRef Skote, M., Haritonidis, J. H., & Henningson, D. S. (2002). Varicose instabilities in turbulent boundary layers. Physics of Fluids, 14, 2309–2323.CrossRef
71.
Zurück zum Zitat Tollmien, W. (1931). \(\ddot{\rm U}\)ber die enstehung der turbulenz. I, English translation. NACA TM 609 Tollmien, W. (1931). \(\ddot{\rm U}\)ber die enstehung der turbulenz. I, English translation. NACA TM 609
72.
Zurück zum Zitat Tumin, A. (2003). The spatial stability of natural convection flow on inclined plates. ASME Journal of Fluids Engineering, 125, 428–437.CrossRef Tumin, A. (2003). The spatial stability of natural convection flow on inclined plates. ASME Journal of Fluids Engineering, 125, 428–437.CrossRef
73.
Zurück zum Zitat Unnikrishnan, S. (2011). Linear stability analysis and nonlinear receptivity study of mixed convection boundary layer developing over a heated flat plate. M. Tech. thesis (I.I.T. Kanpur, 2011) Unnikrishnan, S. (2011). Linear stability analysis and nonlinear receptivity study of mixed convection boundary layer developing over a heated flat plate. M. Tech. thesis (I.I.T. Kanpur, 2011)
74.
Zurück zum Zitat Van der Pol, B., & Bremmer, H. (1959). Operational calculus based on two-sided Laplace integral. Cambridge, UK: Cambridge University Press. Van der Pol, B., & Bremmer, H. (1959). Operational calculus based on two-sided Laplace integral. Cambridge, UK: Cambridge University Press.
75.
Zurück zum Zitat Wang, X. A. (1982). An experimental study of mixed, forced, and free convection heat transfer from a horizontal flat plate to air. ASME Journal of Heat Transfer, 104, 139–144.CrossRef Wang, X. A. (1982). An experimental study of mixed, forced, and free convection heat transfer from a horizontal flat plate to air. ASME Journal of Heat Transfer, 104, 139–144.CrossRef
76.
Zurück zum Zitat Wu, R. S., & Cheng, K. C. (1976). Thermal instability of Blasius flow along horizontal plates. International Journal of Heat and Mass Transfer, 19, 907–913.CrossRef Wu, R. S., & Cheng, K. C. (1976). Thermal instability of Blasius flow along horizontal plates. International Journal of Heat and Mass Transfer, 19, 907–913.CrossRef
77.
Zurück zum Zitat Zhang, S. L. (1997). GPBi-CG: Generalized product-type methods based on Bi-CG for solving Non symmetric linear systems. SIAM Journal on Scientific Computing, 18(2), 537–551.MathSciNetCrossRef Zhang, S. L. (1997). GPBi-CG: Generalized product-type methods based on Bi-CG for solving Non symmetric linear systems. SIAM Journal on Scientific Computing, 18(2), 537–551.MathSciNetCrossRef
78.
Zurück zum Zitat Zuercher, E. J., Jacobs, J. W., & Chen, C. F. (1998). Experimental study of the stability of boundary-layer flow along a heated inclined plate. J. Fluid Mech., 367, 1–25.CrossRef Zuercher, E. J., Jacobs, J. W., & Chen, C. F. (1998). Experimental study of the stability of boundary-layer flow along a heated inclined plate. J. Fluid Mech., 367, 1–25.CrossRef
Metadaten
Titel
Receptivity and Instability
verfasst von
Tapan K. Sengupta
Swagata Bhaumik
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-0038-7_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.