Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

Reconstructing Gene Networks of Forest Trees from Gene Expression Data: Toward Higher-Resolution Approaches

verfasst von : Matt Zinkgraf, Andrew Groover, Vladimir Filkov

Erschienen in: ICT Innovations 2018. Engineering and Life Sciences

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In two of our recent systems biology studies of forest trees we reconstructed gene networks active in wood tissue development for an undomesticated tree genus, Populus. In the first study, we used time series data to determine gene expression dynamics underlying wood formation in response to gravitational stimulus. In the second study, we integrated data from newly generated and publicly available transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments, to identify relationships among genes expressed during wood formation. We demonstrated that these approaches can be used for dissecting complex developmental responses in trees, and can reveal gene clusters and mechanisms influencing poorly understood developmental processes. Combining orthogonal approaches can yield better resolved gene networks, but the resulting network modules may contain large numbers of genes. This limitation reflects the difficulty in creating a variety of experimental conditions that can reveal expression and functional differences among genes within a module, thus imposing limits on the resolving power of network models in practice. To resolve networks at a finer level we are now adding a complementary approach to our work: using cross-species gene network inference. In this approach, transcriptome assemblies of two or more species are considered together to identify expression responses common to all species and also responses that are species specific. To that end here we present a new tool, fastOC, for identifying gene co-expression networks across multiple species. We provide initial evidence that the tool works effectively in calculating co-expression modules with minimal computing requirements, thus making cross-species gene network comparison practical.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101 (2004)CrossRef Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101 (2004)CrossRef
2.
Zurück zum Zitat Bergman, A., Siegal, M.L.: Evolutionary capacitance as a general feature of complex gene networks. Nature 424(6948), 549 (2003)CrossRef Bergman, A., Siegal, M.L.: Evolutionary capacitance as a general feature of complex gene networks. Nature 424(6948), 549 (2003)CrossRef
3.
Zurück zum Zitat Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signaling pathways. Science 283(5400), 381–387 (1999)CrossRef Bhalla, U.S., Iyengar, R.: Emergent properties of networks of biological signaling pathways. Science 283(5400), 381–387 (1999)CrossRef
4.
Zurück zum Zitat Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008)CrossRef Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008 (2008)CrossRef
5.
Zurück zum Zitat Brady, S.M., et al.: A stele-enriched gene regulatory network in the Arabidopsis root. Mol. Syst. Biol. 7(1), 459 (2011)CrossRef Brady, S.M., et al.: A stele-enriched gene regulatory network in the Arabidopsis root. Mol. Syst. Biol. 7(1), 459 (2011)CrossRef
6.
Zurück zum Zitat Ciliberti, S., Martin, O.C., Wagner, A.: Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comput. Biol. 3(2), e15 (2007)MathSciNetCrossRef Ciliberti, S., Martin, O.C., Wagner, A.: Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comput. Biol. 3(2), e15 (2007)MathSciNetCrossRef
7.
Zurück zum Zitat Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32(Suppl\_1), D258–D261 (2004) Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 32(Suppl\_1), D258–D261 (2004)
8.
Zurück zum Zitat Djebali, S., et al.: Landscape of transcription in human cells. Nature 489(7414), 101 (2012)CrossRef Djebali, S., et al.: Landscape of transcription in human cells. Nature 489(7414), 101 (2012)CrossRef
9.
Zurück zum Zitat Ellis, T., Wang, X., Collins, J.J.: Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27(5), 465 (2009)CrossRef Ellis, T., Wang, X., Collins, J.J.: Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27(5), 465 (2009)CrossRef
10.
Zurück zum Zitat Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Res. 16(9), 1169–1181 (2006)CrossRef Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Res. 16(9), 1169–1181 (2006)CrossRef
11.
Zurück zum Zitat Gerstein, M.B., et al.: Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414), 91 (2012)CrossRef Gerstein, M.B., et al.: Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414), 91 (2012)CrossRef
12.
Zurück zum Zitat Gerttula, S., et al.: Transcriptional and hormonal regulation of gravitropism of woody stems in Populus. Plant Cell 27, 2800–2813 (2015). pp. tpc-15 Gerttula, S., et al.: Transcriptional and hormonal regulation of gravitropism of woody stems in Populus. Plant Cell 27, 2800–2813 (2015). pp. tpc-15
13.
Zurück zum Zitat Han, J.D.J., et al.: Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995), 88 (2004)CrossRef Han, J.D.J., et al.: Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995), 88 (2004)CrossRef
15.
Zurück zum Zitat Kellis, M., et al.: Defining functional DNA elements in the human genome. Proc. Natl. Acad. Sci. 111(17), 6131–6138 (2014)CrossRef Kellis, M., et al.: Defining functional DNA elements in the human genome. Proc. Natl. Acad. Sci. 111(17), 6131–6138 (2014)CrossRef
16.
Zurück zum Zitat Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24(5), 719–720 (2007)CrossRef Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24(5), 719–720 (2007)CrossRef
17.
Zurück zum Zitat Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258 (2009)CrossRef Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258 (2009)CrossRef
18.
Zurück zum Zitat Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167 (2011)CrossRef Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167 (2011)CrossRef
19.
Zurück zum Zitat Long, T.A., Brady, S.M., Benfey, P.N.: Systems approaches to identifying gene regulatory networks in plants. Annu. Rev. Cell Dev. Biol. 24, 81–103 (2008)CrossRef Long, T.A., Brady, S.M., Benfey, P.N.: Systems approaches to identifying gene regulatory networks in plants. Annu. Rev. Cell Dev. Biol. 24, 81–103 (2008)CrossRef
20.
Zurück zum Zitat Matasci, N., et al.: Data access for the 1,000 plants (1KP) project. GigaScience 3(1), 17 (2014)CrossRef Matasci, N., et al.: Data access for the 1,000 plants (1KP) project. GigaScience 3(1), 17 (2014)CrossRef
21.
Zurück zum Zitat Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461(7261), 218 (2009)CrossRef Schadt, E.E.: Molecular networks as sensors and drivers of common human diseases. Nature 461(7261), 218 (2009)CrossRef
22.
Zurück zum Zitat Serin, E.A., Nijveen, H., Hilhorst, H.W., Ligterink, W.: Learning from co-expression networks: possibilities and challenges. Front. Plant Sci. 7, 444 (2016)CrossRef Serin, E.A., Nijveen, H., Hilhorst, H.W., Ligterink, W.: Learning from co-expression networks: possibilities and challenges. Front. Plant Sci. 7, 444 (2016)CrossRef
23.
Zurück zum Zitat Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58(2), 221–227 (2007)CrossRef Shinozaki, K., Yamaguchi-Shinozaki, K.: Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58(2), 221–227 (2007)CrossRef
24.
Zurück zum Zitat Taylor-Teeples, M., et al.: An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536), 571 (2015)CrossRef Taylor-Teeples, M., et al.: An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517(7536), 571 (2015)CrossRef
25.
Zurück zum Zitat Usadel, B., et al.: Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 32(12), 1633–1651 (2009)CrossRef Usadel, B., et al.: Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 32(12), 1633–1651 (2009)CrossRef
26.
Zurück zum Zitat Von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406(6792), 188 (2000)CrossRef Von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406(6792), 188 (2000)CrossRef
27.
Zurück zum Zitat Yan, K.K., Wang, D., Rozowsky, J., Zheng, H., Cheng, C., Gerstein, M.: OrthoClust: an orthology-based network framework for clustering data across multiple species. Genome Biol. 15(8), R100 (2014)CrossRef Yan, K.K., Wang, D., Rozowsky, J., Zheng, H., Cheng, C., Gerstein, M.: OrthoClust: an orthology-based network framework for clustering data across multiple species. Genome Biol. 15(8), R100 (2014)CrossRef
29.
Zurück zum Zitat Zinkgraf, M., Liu, L., Groover, A., Filkov, V.: Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions. New Phytol. 214(4), 1464–1478 (2017)CrossRef Zinkgraf, M., Liu, L., Groover, A., Filkov, V.: Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions. New Phytol. 214(4), 1464–1478 (2017)CrossRef
Metadaten
Titel
Reconstructing Gene Networks of Forest Trees from Gene Expression Data: Toward Higher-Resolution Approaches
verfasst von
Matt Zinkgraf
Andrew Groover
Vladimir Filkov
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00825-3_1

Premium Partner