Skip to main content

2020 | OriginalPaper | Buchkapitel

54. Reconstruction of Hydraulic Data by Machine Learning

verfasst von : Corentin J. Lapeyre, Nicolas Cazard, Pamphile T. Roy, Sophie Ricci, Fabrice Zaoui

Erschienen in: Advances in Hydroinformatics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Numerical simulation models associated with hydraulic engineering take a wide array of data into account to produce predictions: rainfall contribution to the drainage basin (characterized by soil nature, infiltration capacity and moisture), current water height in the river, topography, nature and geometry of the river bed, etc. This data is tainted with uncertainties related to an imperfect knowledge of the field, measurement errors on the physical parameters calibrating the equations of physics, an approximation of the latter, etc. These uncertainties can lead the model to overestimate or underestimate the flow and height of the river. Moreover, complex assimilation models often require numerous evaluations of physical solvers to evaluate these uncertainties, limiting their use for some real-time operational applications.
For problems with high uncertainty and vast amounts of measurements available such as hydraulics, a new emerging paradigm has been gaining traction in recent years, namely the data-driven approach. Based mostly on machine learning techniques, these optimization techniques aim to build fast surrogate models entirely inferred from the data. Indeed, a large variety of function classes are available today in this context, and can be rapidly tested to find those who best match the underlying trends in the data. In this approach, these trends are therefore not hand-designed by physicists, but selected based on performance on a given dataset.
In this study, we explore the possibility of building a predictor for river height at an observation point based on drainage basin time series data. An array of data-driven techniques is assessed for this task, including statistical models, machine learning techniques and deep neural network approaches. These are assessed on several metrics, offering an overview of the possibilities related to hydraulic time-series. An important finding is that for the same hydraulic quantity, the best predictors vary depending on whether the data is produced using a physical model or real observations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Besnard A, Goutal N (2011) Comparison between 1D and 2D models for hydraulic modeling of a floodplain: case of Garonne river. La Houille Blanche 3:42–47CrossRef Besnard A, Goutal N (2011) Comparison between 1D and 2D models for hydraulic modeling of a floodplain: case of Garonne river. La Houille Blanche 3:42–47CrossRef
2.
Zurück zum Zitat El Mocayd N (2017) La Décomposition en polynôme du chaos pour l’amélioration de l’assimilation de données ensembliste en hydraulique fluviale. Ph.D. Université de Toulouse, INP El Mocayd N (2017) La Décomposition en polynôme du chaos pour l’amélioration de l’assimilation de données ensembliste en hydraulique fluviale. Ph.D. Université de Toulouse, INP
3.
Zurück zum Zitat Gauckler P (1867) Etudes Théoriques et Pratiques sur l’Écoulement et le Mouvement des Eaux, Comptes Rendus de l’Académie des Sciences, Paris, France, Tome 64:818–822 Gauckler P (1867) Etudes Théoriques et Pratiques sur l’Écoulement et le Mouvement des Eaux, Comptes Rendus de l’Académie des Sciences, Paris, France, Tome 64:818–822
4.
Zurück zum Zitat Goutal N, Lacombe J-M, Zaoui F, El-Kadi-Abderrezzak K (2012) MASCARET: a 1-D open-source software for flow hydrodynamic and water quality in open channel networks. In: River flow pp 1169–1174 Goutal N, Lacombe J-M, Zaoui F, El-Kadi-Abderrezzak K (2012) MASCARET: a 1-D open-source software for flow hydrodynamic and water quality in open channel networks. In: River flow pp 1169–1174
5.
Zurück zum Zitat Hervouet JM (2003) Hydrodynamique des écoulements à surface libre: Modélisation numérique avec la méthode des éléments finis. Presse de l’Ecole Nationale des Ponts et Chaussées Hervouet JM (2003) Hydrodynamique des écoulements à surface libre: Modélisation numérique avec la méthode des éléments finis. Presse de l’Ecole Nationale des Ponts et Chaussées
6.
Zurück zum Zitat Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232 Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232
7.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, CambridgeMATH
8.
Zurück zum Zitat Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408CrossRef Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408CrossRef
9.
Zurück zum Zitat Grossberg S (1982) Contour enhancement, short term memory, and constancies in reverberating neural networks. In: Studies of mind and brain. Springer, Dordrecht, pp 332–378 Grossberg S (1982) Contour enhancement, short term memory, and constancies in reverberating neural networks. In: Studies of mind and brain. Springer, Dordrecht, pp 332–378
10.
Zurück zum Zitat Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, CambridgeMATH Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, CambridgeMATH
11.
Zurück zum Zitat Krige DG, Guarascio M, Camisani-Calzolari FA (1989) Early South African geostatistical techniques in today’s perspective. Geostatistics 1:1–19 Krige DG, Guarascio M, Camisani-Calzolari FA (1989) Early South African geostatistical techniques in today’s perspective. Geostatistics 1:1–19
12.
Zurück zum Zitat Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101(28):5111–5116CrossRef Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101(28):5111–5116CrossRef
13.
Zurück zum Zitat Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2(11):559–572CrossRef Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2(11):559–572CrossRef
15.
Zurück zum Zitat Spanos P, Ghanem R (1991) Stochastic finite elements: a spectral approach. Springer, ChamMATH Spanos P, Ghanem R (1991) Stochastic finite elements: a spectral approach. Springer, ChamMATH
16.
Zurück zum Zitat Roy PT, El Moçayd N, Ricci S, Jouhaud J-C, Goutal N, De Lozzo M, Rochoux MC (2017) Comparison of polynomial chaos and Gaussian process surrogates for uncertainty quantification and correlation estimation of spatially distributed open-channel steady flows. Stochast Environ Res Risk Assess 32(6):1723–1741 Roy PT, El Moçayd N, Ricci S, Jouhaud J-C, Goutal N, De Lozzo M, Rochoux MC (2017) Comparison of polynomial chaos and Gaussian process surrogates for uncertainty quantification and correlation estimation of spatially distributed open-channel steady flows. Stochast Environ Res Risk Assess 32(6):1723–1741
Metadaten
Titel
Reconstruction of Hydraulic Data by Machine Learning
verfasst von
Corentin J. Lapeyre
Nicolas Cazard
Pamphile T. Roy
Sophie Ricci
Fabrice Zaoui
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5436-0_54