Skip to main content
Erschienen in: Journal of Nanoparticle Research 3/2017

01.03.2017 | Research Paper

Recovery of indium ions by nanoscale zero-valent iron

verfasst von: Wen Chen, Yiming Su, Zhipan Wen, Yalei Zhang, Xuefei Zhou, Chaomeng Dai

Erschienen in: Journal of Nanoparticle Research | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Indium and its compounds have plenty of industrial applications and high demand. Therefore, indium recovery from various industrial effluents is necessary. It was sequestered by nanoscale zero-valent iron (nZVI) whose size mainly ranged from 50 to 70 nm. Adsorption kinetics and isotherm, influence of pH, and ionic strength were thoroughly investigated. The reaction process was well fitted to a pseudo second-order model, and the maximum adsorption capacity of In(III) was 390 mg In(III)/g nZVI similar to 385 mg In(III)/g nZVI at 298 K calculated by Langmuir model. The mole ratio of Fe(II) released to In(III) immobilized was 3:2, which implied a special chemical process of co-precipitation combined Fe(OH)2 with In(OH)3. Transmission electron microscopy with an energy-disperse X-ray (TEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology, corrosion products, and valence state of indium precipitate formed on nanoparticles. The structural evolution changed from core-shell structure of iron oxide to sheet structure of co-precipitation, to sphere structure that hydroxide gradually dissolved as the pH decreased, and to cavity structures for the pH continually decreased. Furthermore, below pH 4.7, the In(III) enrichment was inhibited for the limited capacity of co-precipitation. Also, it was found that Ca2+ and HPO4 2− have more negative influence on In(III) recovery compared with Na+, NO3 , HCO3 , and SO4 2−. Therefore, the In(III) recovery can be described by a mechanism which consists of adsorption, co-precipitation, and reduction and was over 78% even after 3 cycles. The results confirmed that it was applicable to employ nZVI for In(III) immobilization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ajmal M, Khan AH, Ahmad S, Ahmad A (1998) Role of sawdust in the removal of copper(II) from industrial wastes. Water Res 32(10):3085–3091CrossRef Ajmal M, Khan AH, Ahmad S, Ahmad A (1998) Role of sawdust in the removal of copper(II) from industrial wastes. Water Res 32(10):3085–3091CrossRef
Zurück zum Zitat Alguacil FJ, Lopez FA, Rodriguez O, Martinez-Ramirez S, Garcia-Diaz I (2016) Sorption of indium (III) onto carbon nanotubes. Ecotoxicol Environ Saf 130:81–86CrossRef Alguacil FJ, Lopez FA, Rodriguez O, Martinez-Ramirez S, Garcia-Diaz I (2016) Sorption of indium (III) onto carbon nanotubes. Ecotoxicol Environ Saf 130:81–86CrossRef
Zurück zum Zitat Biswas K, Saha SK, Ghosh UC (2007) Adsorption of fluoride from aqueous solution by a synthetic iron(III)-aluminum(III) mixed oxide. Ind Eng Chem Res 46(16):5346–5356CrossRef Biswas K, Saha SK, Ghosh UC (2007) Adsorption of fluoride from aqueous solution by a synthetic iron(III)-aluminum(III) mixed oxide. Ind Eng Chem Res 46(16):5346–5356CrossRef
Zurück zum Zitat Calabro PS, Moraci N, Suraci P (2012) Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater. J Hazard Mater 207:111–116CrossRef Calabro PS, Moraci N, Suraci P (2012) Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater. J Hazard Mater 207:111–116CrossRef
Zurück zum Zitat Calagui MJC, Senoro DB, Kan CC, Salvacion JWL, Futalan CM, Wan MW (2014) Adsorption of indium(III) ions from aqueous solution using chitosan-coated bentonite beads. J Hazard Mater 277:120–126CrossRef Calagui MJC, Senoro DB, Kan CC, Salvacion JWL, Futalan CM, Wan MW (2014) Adsorption of indium(III) ions from aqueous solution using chitosan-coated bentonite beads. J Hazard Mater 277:120–126CrossRef
Zurück zum Zitat Chou WL, Huang YH (2009) Electrochemical removal of indium ions from aqueous solution using iron electrodes. J Hazard Mater 172(1):46–53CrossRef Chou WL, Huang YH (2009) Electrochemical removal of indium ions from aqueous solution using iron electrodes. J Hazard Mater 172(1):46–53CrossRef
Zurück zum Zitat Cushing BL, Kolesnichenko VL, O'Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946CrossRef Cushing BL, Kolesnichenko VL, O'Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946CrossRef
Zurück zum Zitat Dai C, Zhou Z, Zhou X, Zhang Y (2014) Removal of Sb (III) and Sb (V) from aqueous solutions using nZVI. Water Air Soil Pollut 225(1):1–12CrossRef Dai C, Zhou Z, Zhou X, Zhang Y (2014) Removal of Sb (III) and Sb (V) from aqueous solutions using nZVI. Water Air Soil Pollut 225(1):1–12CrossRef
Zurück zum Zitat de Jong MP, van Ijzendoorn LJ, de Voigt MJA (2000) Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl Phys Lett 77(14):2255–2257CrossRef de Jong MP, van Ijzendoorn LJ, de Voigt MJA (2000) Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl Phys Lett 77(14):2255–2257CrossRef
Zurück zum Zitat Devlin JF, Allin KO (2005) Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environmental Science & Technology 39(6):1868–1874CrossRef Devlin JF, Allin KO (2005) Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environmental Science & Technology 39(6):1868–1874CrossRef
Zurück zum Zitat Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69CrossRef Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69CrossRef
Zurück zum Zitat Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205CrossRef Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205CrossRef
Zurück zum Zitat Jeon C, Cha J-H, Choi J-Y (2015) Adsorption and recovery characteristics of phosphorylated sawdust bead for indium(III) in industrial wastewater. J Ind Eng Chem 27:201–206CrossRef Jeon C, Cha J-H, Choi J-Y (2015) Adsorption and recovery characteristics of phosphorylated sawdust bead for indium(III) in industrial wastewater. J Ind Eng Chem 27:201–206CrossRef
Zurück zum Zitat Jeong JK, Yang HW, Jeong JH, Mo YG, Kim HD (2008) Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl Phys Lett 93(12):3CrossRef Jeong JK, Yang HW, Jeong JH, Mo YG, Kim HD (2008) Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl Phys Lett 93(12):3CrossRef
Zurück zum Zitat Ji Y (2014) Ions removal by iron nanoparticles: a study on solid–water interface with zeta potential. Colloids Surf A Physicochem Eng Asp 444:1–8CrossRef Ji Y (2014) Ions removal by iron nanoparticles: a study on solid–water interface with zeta potential. Colloids Surf A Physicochem Eng Asp 444:1–8CrossRef
Zurück zum Zitat Kanel SR, Manning B, Charlet L, Chio H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology 39(5):1291–1298CrossRef Kanel SR, Manning B, Charlet L, Chio H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology 39(5):1291–1298CrossRef
Zurück zum Zitat Kanel SR, Grenèche JM, Chio H (2006) Arsenic(V) removal from groundwater using Nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology 40(6):2045–2050CrossRef Kanel SR, Grenèche JM, Chio H (2006) Arsenic(V) removal from groundwater using Nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology 40(6):2045–2050CrossRef
Zurück zum Zitat Kim SA, Kamala-Kannan S, Lee K-J, Park Y-J, Shea PJ, Lee W-H, Kim H-M, Oh B-T (2013) Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem Eng J 217:54–60CrossRef Kim SA, Kamala-Kannan S, Lee K-J, Park Y-J, Shea PJ, Lee W-H, Kim H-M, Oh B-T (2013) Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem Eng J 217:54–60CrossRef
Zurück zum Zitat Kishimoto N, Iwano S, Narazaki Y (2011) Mechanistic consideration of zinc ion removal by zero-valent iron. Water Air and Soil Pollution 221(1–4):183–189CrossRef Kishimoto N, Iwano S, Narazaki Y (2011) Mechanistic consideration of zinc ion removal by zero-valent iron. Water Air and Soil Pollution 221(1–4):183–189CrossRef
Zurück zum Zitat Li X-q, Zhang W-x (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni (II) sequestration. Langmuir 22(10):4638–4642CrossRef Li X-q, Zhang W-x (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni (II) sequestration. Langmuir 22(10):4638–4642CrossRef
Zurück zum Zitat Liu T, Wang Z-L, Yan X, Zhang B (2014) Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron. Chem Eng J 245:34–40CrossRef Liu T, Wang Z-L, Yan X, Zhang B (2014) Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: pumice-supported nanoscale zero-valent iron. Chem Eng J 245:34–40CrossRef
Zurück zum Zitat Meng XG, Korfiatis GP, Bang SB, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133(1):103–111CrossRef Meng XG, Korfiatis GP, Bang SB, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133(1):103–111CrossRef
Zurück zum Zitat Ribas D, Cernik M, Martí V, Benito JA (2016) Improvements in nanoscale zero-valent iron production by milling through the addition of alumina. J Nanopart Res 18(7):181CrossRef Ribas D, Cernik M, Martí V, Benito JA (2016) Improvements in nanoscale zero-valent iron production by milling through the addition of alumina. J Nanopart Res 18(7):181CrossRef
Zurück zum Zitat Rocchetti L, Amato A, Beolchini F (2016) Recovery of indium from liquid crystal displays. J Clean Prod 116:299–305CrossRef Rocchetti L, Amato A, Beolchini F (2016) Recovery of indium from liquid crystal displays. J Clean Prod 116:299–305CrossRef
Zurück zum Zitat Romson JL, Hook B, Rigot V, Schork MA, Swanson DP, Lucchesi B (1982) The effect of ibuprofen on accumulation of indium-111-labeled platelets and leukocytes in experimental myocardial infarction. Circulation 66(5):1002–1011CrossRef Romson JL, Hook B, Rigot V, Schork MA, Swanson DP, Lucchesi B (1982) The effect of ibuprofen on accumulation of indium-111-labeled platelets and leukocytes in experimental myocardial infarction. Circulation 66(5):1002–1011CrossRef
Zurück zum Zitat Saverymuttu S, Camilleri M, Rees H, Lavender J, Hodgson H, Chadwick V (1986) Indium 111-granulocyte scanning in the assessment of disease extent and disease activity in inflammatory bowel disease. A comparison with colonoscopy, histology, and fecal indium 111-granulocyte excretion. Gastroenterology 90(5 Pt 1):1121–1128CrossRef Saverymuttu S, Camilleri M, Rees H, Lavender J, Hodgson H, Chadwick V (1986) Indium 111-granulocyte scanning in the assessment of disease extent and disease activity in inflammatory bowel disease. A comparison with colonoscopy, histology, and fecal indium 111-granulocyte excretion. Gastroenterology 90(5 Pt 1):1121–1128CrossRef
Zurück zum Zitat Shi JL, Yi SN, He HL, Long C, Li AM (2013) Preparation of nanoscale zero-valent iron supported on chelating resin with nitrogen donor atoms for simultaneous reduction of Pb2+ and NO3. Chem Eng J 230:166–171CrossRef Shi JL, Yi SN, He HL, Long C, Li AM (2013) Preparation of nanoscale zero-valent iron supported on chelating resin with nitrogen donor atoms for simultaneous reduction of Pb2+ and NO3. Chem Eng J 230:166–171CrossRef
Zurück zum Zitat Stumm W, Morgan J (1996) Chemical equilibria and rates in natural waters. Aquatic Chemistry 1022 Stumm W, Morgan J (1996) Chemical equilibria and rates in natural waters. Aquatic Chemistry 1022
Zurück zum Zitat Su C, Puls RW (2004) Nitrate reduction by zerovalent iron: effects of Formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environmental Science & Technology 38(9):2715–2720CrossRef Su C, Puls RW (2004) Nitrate reduction by zerovalent iron: effects of Formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environmental Science & Technology 38(9):2715–2720CrossRef
Zurück zum Zitat Su Y, Adeleye AS, Huang Y, Sun X, Dai C, Zhou X, Zhang Y, Keller AA (2014) Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res 63:102–111CrossRef Su Y, Adeleye AS, Huang Y, Sun X, Dai C, Zhou X, Zhang Y, Keller AA (2014) Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res 63:102–111CrossRef
Zurück zum Zitat Su YM, Adeleye AS, Keller AA, Huang YX, Dai CM, Zhou XF, Zhang YL (2015) Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Res 74:47–57CrossRef Su YM, Adeleye AS, Keller AA, Huang YX, Dai CM, Zhou XF, Zhang YL (2015) Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Res 74:47–57CrossRef
Zurück zum Zitat Tsai HS, Tsai TH (2012) Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene. Molecules 17(1):408–419CrossRef Tsai HS, Tsai TH (2012) Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene. Molecules 17(1):408–419CrossRef
Zurück zum Zitat Wen ZP, Zhang YL, Dai CM (2014) Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf A Physicochem Eng Asp 457:433–440CrossRef Wen ZP, Zhang YL, Dai CM (2014) Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf A Physicochem Eng Asp 457:433–440CrossRef
Zurück zum Zitat Wen Z, Zhang Y, Guo S, Chen R (2017) Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal. J Colloid Interface Sci 486:211–218CrossRef Wen Z, Zhang Y, Guo S, Chen R (2017) Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal. J Colloid Interface Sci 486:211–218CrossRef
Zurück zum Zitat Xiao SL, Ma H, Shen MW, Wang SY, Huang QG, Shi XY (2011) Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids Surf A Physicochem Eng Asp 381(1–3):48–54CrossRef Xiao SL, Ma H, Shen MW, Wang SY, Huang QG, Shi XY (2011) Excellent copper(II) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids Surf A Physicochem Eng Asp 381(1–3):48–54CrossRef
Zurück zum Zitat Xie L, Shang C (2007) The effects of operational parameters and common anions on the reactivity of zero-valent iron in bromate reduction. Chemosphere 66(9):1652–1659CrossRef Xie L, Shang C (2007) The effects of operational parameters and common anions on the reactivity of zero-valent iron in bromate reduction. Chemosphere 66(9):1652–1659CrossRef
Zurück zum Zitat Xiong C, Han X, Yao C (2010) Sorption behavior of in(III) ions onto cation-exchange carboxylic resin in aqueous solutions: batch and column studies. Sep Sci Technol 45(16):2368–2375CrossRef Xiong C, Han X, Yao C (2010) Sorption behavior of in(III) ions onto cation-exchange carboxylic resin in aqueous solutions: batch and column studies. Sep Sci Technol 45(16):2368–2375CrossRef
Zurück zum Zitat Xiong K, Gao Y, Zhou L, Zhang X (2016) Zero-valent iron particles embedded on the mesoporous silica–carbon for chromium (VI) removal from aqueous solution. J Nanopart Res 18(9):267CrossRef Xiong K, Gao Y, Zhou L, Zhang X (2016) Zero-valent iron particles embedded on the mesoporous silica–carbon for chromium (VI) removal from aqueous solution. J Nanopart Res 18(9):267CrossRef
Zurück zum Zitat Yang C-h (1998) Statistical mechanical study on the Freundlich isotherm equation. J Colloid Interface Sci 208(2):379–387CrossRef Yang C-h (1998) Statistical mechanical study on the Freundlich isotherm equation. J Colloid Interface Sci 208(2):379–387CrossRef
Zurück zum Zitat Yang J, Retegan T, Ekberg C (2013) Indium recovery from discarded LCD panel glass by solvent extraction. Hydrometallurgy 137:68–77CrossRef Yang J, Retegan T, Ekberg C (2013) Indium recovery from discarded LCD panel glass by solvent extraction. Hydrometallurgy 137:68–77CrossRef
Zurück zum Zitat Yuan Y, Liu J, Zhou B, Yao S, Li H, Xu W (2010) Synthesis of coated solvent impregnated resin for the adsorption of indium (III). Hydrometallurgy 101(3–4):148–155CrossRef Yuan Y, Liu J, Zhou B, Yao S, Li H, Xu W (2010) Synthesis of coated solvent impregnated resin for the adsorption of indium (III). Hydrometallurgy 101(3–4):148–155CrossRef
Zurück zum Zitat Zhang Y, Su Y, Zhou X, Dai C, Keller AA (2013) A new insight on the core–shell structure of zerovalent iron nanoparticles and its application for Pb (II) sequestration. J Hazard Mater 263:685–693CrossRef Zhang Y, Su Y, Zhou X, Dai C, Keller AA (2013) A new insight on the core–shell structure of zerovalent iron nanoparticles and its application for Pb (II) sequestration. J Hazard Mater 263:685–693CrossRef
Zurück zum Zitat Zhang Y, Li Y, Dai C, Zhou X, Zhang W (2014) Sequestration of Cd (II) with nanoscale zero-valent iron (nZVI): characterization and test in a two-stage system. Chem Eng J 244:218–226CrossRef Zhang Y, Li Y, Dai C, Zhou X, Zhang W (2014) Sequestration of Cd (II) with nanoscale zero-valent iron (nZVI): characterization and test in a two-stage system. Chem Eng J 244:218–226CrossRef
Zurück zum Zitat Zhang Y, Chen W, Dai C, Zhou C, Zhou X (2015) Structural evolution of nanoscale zero-valent iron (nZVI) in anoxic Co2+ solution: interactional performance and mechanism. Scientific reports 5:13966CrossRef Zhang Y, Chen W, Dai C, Zhou C, Zhou X (2015) Structural evolution of nanoscale zero-valent iron (nZVI) in anoxic Co2+ solution: interactional performance and mechanism. Scientific reports 5:13966CrossRef
Zurück zum Zitat Zhao F, Zou Y, Lv X, Liang H, Jia Q, Ning W (2015) Synthesis of CoFe2O4–zeolite materials and application to the adsorption of gallium and indium. J Chem Eng Data 60(5):1338–1344CrossRef Zhao F, Zou Y, Lv X, Liang H, Jia Q, Ning W (2015) Synthesis of CoFe2O4–zeolite materials and application to the adsorption of gallium and indium. J Chem Eng Data 60(5):1338–1344CrossRef
Zurück zum Zitat Zhou Z, Dai CM, Zhou XF, Zhao JF, Zhang YL (2015) The removal of antimony by novel NZVI-zeolite: the role of iron transformation. Water Air and Soil Pollution 226(3):16 Zhou Z, Dai CM, Zhou XF, Zhao JF, Zhang YL (2015) The removal of antimony by novel NZVI-zeolite: the role of iron transformation. Water Air and Soil Pollution 226(3):16
Metadaten
Titel
Recovery of indium ions by nanoscale zero-valent iron
verfasst von
Wen Chen
Yiming Su
Zhipan Wen
Yalei Zhang
Xuefei Zhou
Chaomeng Dai
Publikationsdatum
01.03.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 3/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-016-3692-7

Weitere Artikel der Ausgabe 3/2017

Journal of Nanoparticle Research 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.