Skip to main content

2023 | OriginalPaper | Buchkapitel

Reducing Concrete Drying Shrinkage Using Superabsorbent Cellulose Fiber

verfasst von : A. L. Hassan, A. H. M. M. Billah

Erschienen in: Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The presence of shrinkage cracks in concrete is one of the major issues affecting concrete durability. Loss of moisture, changes in temperature, and hydration process are few reasons that cause shrinkage cracks in concrete. Among all types of shrinkage, drying shrinkage contributes a major portion of shrinkage strain in conventional concrete. Various parameters that affect the drying shrinkage of concrete are the element thickness, porosity, paste volume, fineness of the binder, water-cement ratio, fiber content, temperature, and relative humidity. The objective of this study is to develop a pulp fiber-based concrete mix that is capable of reducing concrete drying shrinkage. This study aims at developing a concrete mix that is acceptable for both its fresh and hardened properties with low drying shrinkage and cracking. To achieve this objective, Superabsorbent Cellulose Fibers (SCF) derived from water-insoluble, lignin-free Softwood Kraft Pulp fibers is used in concrete mix as a percentage of the total weight of water and cement content. Concrete mix design is performed for a target compressive strength of 35 MPa for exposure class C-1. Mix proportions are systematically designed to capture all the variables that affect the fresh and hardened concrete properties. The microstructure of hardened SCF concrete is studied using Scanning Electron Microscope (SEM) images. Test results for both fresh and hardened concretes are analyzed prudently to define the optimum SCF content. It is expected that the outcome of this study will aid in reducing the drying shrinkage in concrete.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat American Society for Testing and Materials (2017) Length change of hardened hydraulic-cement, mortar, and concrete. ASTM International, West Conshohocken, PA, ASTM C157/C157M-17 American Society for Testing and Materials (2017) Length change of hardened hydraulic-cement, mortar, and concrete. ASTM International, West Conshohocken, PA, ASTM C157/C157M-17
2.
Zurück zum Zitat American Society for Testing and Materials (2020) Standard specification for Portland cement. ASTM International, West Conshohocken, PA, ASTM C150/C150M-20 American Society for Testing and Materials (2020) Standard specification for Portland cement. ASTM International, West Conshohocken, PA, ASTM C150/C150M-20
3.
Zurück zum Zitat Babaei K, Fouladgar AM (1997) Solutions to concrete bridge deck cracking. Concr Int 19(7):34–37 Babaei K, Fouladgar AM (1997) Solutions to concrete bridge deck cracking. Concr Int 19(7):34–37
4.
Zurück zum Zitat Boshoff WP, Combrinck R (2013) Modelling the severity of plastic shrinkage cracking in concrete. Cem Concr Res 48:34–39CrossRef Boshoff WP, Combrinck R (2013) Modelling the severity of plastic shrinkage cracking in concrete. Cem Concr Res 48:34–39CrossRef
5.
Zurück zum Zitat Canadian Standards Association (2014) Air content of plastic concrete by the pressure method: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-4C Canadian Standards Association (2014) Air content of plastic concrete by the pressure method: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-4C
6.
Zurück zum Zitat Canadian Standards Association (2018) Cementitious materials compendium: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A3000 Canadian Standards Association (2018) Cementitious materials compendium: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A3000
7.
Zurück zum Zitat Canadian Standards Association (2014) Compressive strength of cylindrical concrete specimens: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-9C Canadian Standards Association (2014) Compressive strength of cylindrical concrete specimens: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-9C
8.
Zurück zum Zitat Canadian Standards Association (2014) Concrete materials, and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2. Canadian Standards Association (2014) Concrete materials, and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2.
9.
Zurück zum Zitat Canadian Standards Association (2014) Flexural strength of concrete (using a simple beam with third point loading): concrete materials and methods of concrete construction—methods of tests for concrete, 2014. CSA, Mississauga, Ontario, A23.2-8C Canadian Standards Association (2014) Flexural strength of concrete (using a simple beam with third point loading): concrete materials and methods of concrete construction—methods of tests for concrete, 2014. CSA, Mississauga, Ontario, A23.2-8C
10.
Zurück zum Zitat Canadian Standards Association (2014) Making and curing concrete compression and flexural test specimens: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-3C (Clause 7.3.1) Canadian Standards Association (2014) Making and curing concrete compression and flexural test specimens: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-3C (Clause 7.3.1)
11.
Zurück zum Zitat Canadian Standards Association (2019) Relative density, and absorption of coarse aggregate: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-12A Canadian Standards Association (2019) Relative density, and absorption of coarse aggregate: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-12A
12.
Zurück zum Zitat Canadian Standards Association (2019) Relative density, and absorption of fine aggregate: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-6A Canadian Standards Association (2019) Relative density, and absorption of fine aggregate: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-6A
13.
Zurück zum Zitat Canadian Standards Association (2019) Sieve analysis of fine and coarse aggregate: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-2A Canadian Standards Association (2019) Sieve analysis of fine and coarse aggregate: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-2A
14.
Zurück zum Zitat Canadian Standards Association (2014) Slump of concrete: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-5C Canadian Standards Association (2014) Slump of concrete: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-5C
15.
Zurück zum Zitat Canadian Standards Association (2014). Splitting tensile strength of cylindrical concrete specimens: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-13C Canadian Standards Association (2014). Splitting tensile strength of cylindrical concrete specimens: concrete materials and methods of concrete construction—methods of tests for concrete. CSA, Mississauga, Ontario, A23.2-13C
16.
Zurück zum Zitat Eguchi K, Teranishi K (2005) Prediction equation of drying shrinkage of concrete based on composite model. Cem Concr Res 35(3):483–493CrossRef Eguchi K, Teranishi K (2005) Prediction equation of drying shrinkage of concrete based on composite model. Cem Concr Res 35(3):483–493CrossRef
17.
Zurück zum Zitat Gaines M, Sheikhizadeh M (2013) How to specify and construct durable crack free bridge decks. Washington State Experience, Concrete Bridge Views, No 72 Gaines M, Sheikhizadeh M (2013) How to specify and construct durable crack free bridge decks. Washington State Experience, Concrete Bridge Views, No 72
18.
Zurück zum Zitat Mindess S, Young JF (1981) Concrete. Prentice Hall, Englewood Cliffs, NJ, p 481 Mindess S, Young JF (1981) Concrete. Prentice Hall, Englewood Cliffs, NJ, p 481
19.
Zurück zum Zitat Neville AM (1995) Properties of concrete, 4th edn. Longman Group Limited, England, p 844 Neville AM (1995) Properties of concrete, 4th edn. Longman Group Limited, England, p 844
20.
Zurück zum Zitat Nmai CK, Vojtko D, Schaef S, Attiogbe EK, Bury MA (2014) Crack-reducing admixture. Concr Int 36(1):53–55 Nmai CK, Vojtko D, Schaef S, Attiogbe EK, Bury MA (2014) Crack-reducing admixture. Concr Int 36(1):53–55
21.
Zurück zum Zitat Sivakumar A, Santhanam M (2006) Experimental methodology to study plastic shrinkage cracks in high strength concrete. In: Measuring, monitoring, and modeling concrete properties. Springer Sivakumar A, Santhanam M (2006) Experimental methodology to study plastic shrinkage cracks in high strength concrete. In: Measuring, monitoring, and modeling concrete properties. Springer
22.
Zurück zum Zitat Tazawa E (1998) Autogenous shrinkage of concrete. Proceedings of the International workshop. JCI (Japan Concrete Institute). Hiroshima, pp 13–14 Tazawa E (1998) Autogenous shrinkage of concrete. Proceedings of the International workshop. JCI (Japan Concrete Institute). Hiroshima, pp 13–14
23.
Zurück zum Zitat Wittmann F, Lukas J (1975) Experimental study of thermal expansion of hardened cement paste. Mater Struct 8(5):405 Wittmann F, Lukas J (1975) Experimental study of thermal expansion of hardened cement paste. Mater Struct 8(5):405
Metadaten
Titel
Reducing Concrete Drying Shrinkage Using Superabsorbent Cellulose Fiber
verfasst von
A. L. Hassan
A. H. M. M. Billah
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-1004-3_19