Skip to main content

2021 | OriginalPaper | Buchkapitel

4. Reduction Techniques for TEP Problems

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the most common representations of the TEP problem is a mixed-integer linear programming (MILP) problem, in which operation costs are modeled by linear variables, and investment decisions are represented by integer variables. The large size of the TEP problem, together with the lumpiness of investment decisions, makes the problem very hard to solve. To cope with this issue, techniques to represent the TEP problem in a compact way, i.e., reduction techniques, can lessen the size of the problem and make it easier to solve. The TEP problem can be reduced in three dimensions: the power grid representation (spatial dimension), the operating point representation (temporal representation), and the number of candidate grid elements to consider. An interesting methodology to reduce the TEP problem in each of its three dimensions is to guide the reduction using the information from the solution of a more tractable version of the problem. The first step consists in solving a linear relaxation of the TEP problem. Then, we make use of the information associated with this approximate solution to formulate the TEP problem in a compact way for each dimension. This chapter introduces three efficient reduction techniques, one reduction technique for each problem dimension, that are based on this linear relaxation.
This chapter is organized as follows. Section 4.1 presents a methodology to reduce the size of the temporal representation of the TEP problem, also called snapshot selection method. Section 4.2 presents a methodology to reduce the size of the spatial representation of the problem, also called network reduction method. Section 4.3 introduces a methodology to identify promising candidate grid elements, also called search-space reduction method. Finally, Sect. 4.4 concludes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The optimal power flow is the set of power flows in an electrical network which minimizes the system operation costs.
 
2
The European Network of Transmission System Operators (ENTSOE), representing 43 electricity transmission system operators (TSOs) from 36 countries across Europe.
 
3
Given a network, a network partition is a classification of its nodes into groups, or areas.
 
4
Given a network and a network partition, border buses are those buses that belong to a certain area of the partition and that are connected through a line to at least one bus from another area.
 
5
The degree of a bus is the number of lines connected to it.
 
Literatur
1.
Zurück zum Zitat D.Z. Fitiwi, F. de Cuadra, L. Olmos, M. Rivier, A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty. Energy 90(2), 1360–1376 (2015)CrossRef D.Z. Fitiwi, F. de Cuadra, L. Olmos, M. Rivier, A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty. Energy 90(2), 1360–1376 (2015)CrossRef
2.
Zurück zum Zitat Báñez Chicharro, F., Olmos Camacho, L., Ramos Galán, A., Canteli, L., & María, J. (2016). A Benefit-Based Methodology to Rank Transmission Expansion Projects Báñez Chicharro, F., Olmos Camacho, L., Ramos Galán, A., Canteli, L., & María, J. (2016). A Benefit-Based Methodology to Rank Transmission Expansion Projects
3.
Zurück zum Zitat ENTSOE. (2015). ENTSO-E Guideline for Cost Benefit Analysis of Grid Development Projects (Guideline) ENTSOE. (2015). ENTSO-E Guideline for Cost Benefit Analysis of Grid Development Projects (Guideline)
4.
Zurück zum Zitat C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, J.S. Park, Fast algorithms for projected clustering, in Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, (ACM, New York, 1999), pp. 61–72CrossRef C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, J.S. Park, Fast algorithms for projected clustering, in Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, (ACM, New York, 1999), pp. 61–72CrossRef
5.
Zurück zum Zitat L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis (Wiley, Hoboken, 2009)MATH L. Kaufman, P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis (Wiley, Hoboken, 2009)MATH
6.
Zurück zum Zitat F. Dorfler, F. Bullo, Kron reduction of graphs with applications to electrical networks. IEEE Trans. Circuits Syst. Regul. Pap. 60(1), 150–163 (2013)MathSciNetCrossRef F. Dorfler, F. Bullo, Kron reduction of graphs with applications to electrical networks. IEEE Trans. Circuits Syst. Regul. Pap. 60(1), 150–163 (2013)MathSciNetCrossRef
8.
Zurück zum Zitat C. Chekuri, V. Madan, Approximating multicut and the demand graph, in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, vols. 1–0 (Society for Industrial and Applied Mathematics, 2017), pp. 855–874 C. Chekuri, V. Madan, Approximating multicut and the demand graph, in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, vols. 1–0 (Society for Industrial and Applied Mathematics, 2017), pp. 855–874
9.
Zurück zum Zitat N. Garg, V.V. Vazirani, M. Yannakakis, Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Comput. 25(2), 235–251 (1996)MathSciNetCrossRef N. Garg, V.V. Vazirani, M. Yannakakis, Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Comput. 25(2), 235–251 (1996)MathSciNetCrossRef
10.
Zurück zum Zitat R. Tarjan, Depth-first search and linear graph algorithms, in 12th Annual Symposium on Switching and Automata Theory (swat 1971), (1971), pp. 114–121CrossRef R. Tarjan, Depth-first search and linear graph algorithms, in 12th Annual Symposium on Switching and Automata Theory (swat 1971), (1971), pp. 114–121CrossRef
11.
Zurück zum Zitat W.F. Tinney, J.W. Walker, Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. IEEE 55(11), 1801–1809 (1967)CrossRef W.F. Tinney, J.W. Walker, Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. IEEE 55(11), 1801–1809 (1967)CrossRef
12.
Zurück zum Zitat W. Jang, S. Mohapatra, T.J. Overbye, H. Zhu, Line limit preserving power system equivalent, in 2013 IEEE Power and Energy Conference at Illinois (PECI), (2013), pp. 206–212CrossRef W. Jang, S. Mohapatra, T.J. Overbye, H. Zhu, Line limit preserving power system equivalent, in 2013 IEEE Power and Energy Conference at Illinois (PECI), (2013), pp. 206–212CrossRef
13.
Zurück zum Zitat R. Villasana, L.L. Garver, S.J. Salon, Transmission network planning using linear programming. IEEE Trans. Power Syst. PAS-104(2), 349–356 (1985)CrossRef R. Villasana, L.L. Garver, S.J. Salon, Transmission network planning using linear programming. IEEE Trans. Power Syst. PAS-104(2), 349–356 (1985)CrossRef
14.
Zurück zum Zitat G.P. McCormick, Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems. Math. Program. 10(1), 147–175 (1976)CrossRef G.P. McCormick, Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems. Math. Program. 10(1), 147–175 (1976)CrossRef
Metadaten
Titel
Reduction Techniques for TEP Problems
verfasst von
Quentin Ploussard
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-49428-5_4