Skip to main content

2013 | OriginalPaper | Buchkapitel

3. Relative Trajectory Design

verfasst von : Marco D’Errico, Giancarmine Fasano

Erschienen in: Distributed Space Missions for Earth System Monitoring

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An analysis of orbital relative motion models is presented with emphasis on their application to formation design. Relative motion model evolution from the first Hill’s schematization (circular orbit, close satellites) is described, considering the inclusion of chief’s orbit eccentricity and orbital perturbations. In particular, the inclusion of J2-secular effects is treated in depth considering various approaches in literature. Literature is also reviewed for both small and large eccentricities. Further details are presented to model formations with small chief’s eccentricity (order of 10−3), which are typical of Earth observation missions, for both the case of close formations, i.e. with satellite distance of the order of tens of kilometers, and large formations, i.e. satellite distance up to hundreds of kilometers. Finally, design applications are presented, with derivation of relative trajectories from application requirements. As an example, relative orbits for SAR interferometry are derived from the requested altitude measurement uncertainty and considering different candidate geometries (pendulum, cartwheel, etc.). Relative orbits for SAR tomography and large baseline bistatic SAR applications are also analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Hill GW (1878) Researches in the lunar theory. Am J Math 1(2):129–147CrossRef Hill GW (1878) Researches in the lunar theory. Am J Math 1(2):129–147CrossRef
3.
Zurück zum Zitat Hill GW (1878) Researches in the lunar theory. Am J Math 1(3):245–260CrossRef Hill GW (1878) Researches in the lunar theory. Am J Math 1(3):245–260CrossRef
4.
Zurück zum Zitat Clohessy WH, Wiltshire RS (1960) Terminal guidance system for satellite rendezvous. J Aerosp Sci 27(9):653–658MATH Clohessy WH, Wiltshire RS (1960) Terminal guidance system for satellite rendezvous. J Aerosp Sci 27(9):653–658MATH
5.
Zurück zum Zitat London HS (1963) Second approximation to the solution of the rendezvous equation. AIAA J 1(7):1691–1693MATHCrossRef London HS (1963) Second approximation to the solution of the rendezvous equation. AIAA J 1(7):1691–1693MATHCrossRef
6.
Zurück zum Zitat Anthony ML, Sasaki FT (1965) Rendezvous problem for nearly circular orbits. AIAA J 3(9):1666–1673CrossRef Anthony ML, Sasaki FT (1965) Rendezvous problem for nearly circular orbits. AIAA J 3(9):1666–1673CrossRef
7.
Zurück zum Zitat Tshauner J, Hempel P (1965) Rendezvous zu einem in Elliptischer Bahn Umlaufenden Ziel. Acta Astronaut 11(2):104–109 Tshauner J, Hempel P (1965) Rendezvous zu einem in Elliptischer Bahn Umlaufenden Ziel. Acta Astronaut 11(2):104–109
8.
Zurück zum Zitat Schaub H, Junkins JL (2003) Spacecraft formation flying. In: Analytical mechanics of space systems. AIAA, Reston, pp 593–674CrossRef Schaub H, Junkins JL (2003) Spacecraft formation flying. In: Analytical mechanics of space systems. AIAA, Reston, pp 593–674CrossRef
9.
Zurück zum Zitat Vadali SR, Alfriend KT, Vaddi S (2000) Hill’s equations, mean orbit elements, and formation flying of satellites. In: The Richard H. Battin astrodynamics conference, College Station, TX Vadali SR, Alfriend KT, Vaddi S (2000) Hill’s equations, mean orbit elements, and formation flying of satellites. In: The Richard H. Battin astrodynamics conference, College Station, TX
10.
Zurück zum Zitat Wiesel WE (2002) Relative satellite motion about an oblate planet. AIAA J Guid Contr Dyn 25(4):776–785CrossRef Wiesel WE (2002) Relative satellite motion about an oblate planet. AIAA J Guid Contr Dyn 25(4):776–785CrossRef
11.
Zurück zum Zitat Schweighart S, Sedwick R (2002) High fidelity linearized J2 model for satellite formation flight. AIAA J Guid Contr Dyn 25(6):1073–1080CrossRef Schweighart S, Sedwick R (2002) High fidelity linearized J2 model for satellite formation flight. AIAA J Guid Contr Dyn 25(6):1073–1080CrossRef
12.
13.
Zurück zum Zitat Carter TE (1998) State transition matrices for terminal tendezvous studies: brief survey and new examples. AIAA J Guid Contr Dyn 21(1):148–155MATHCrossRef Carter TE (1998) State transition matrices for terminal tendezvous studies: brief survey and new examples. AIAA J Guid Contr Dyn 21(1):148–155MATHCrossRef
14.
Zurück zum Zitat Gim D-W, Alfriend KT (2003) State transition matrix of relative motion for the perturbed noncircular reference. AIAA J Guid Contr Dyn 26(6):956–971CrossRef Gim D-W, Alfriend KT (2003) State transition matrix of relative motion for the perturbed noncircular reference. AIAA J Guid Contr Dyn 26(6):956–971CrossRef
15.
Zurück zum Zitat Gim D-W, Alfriend KT (2005) Satellite relative motion using differential equinoctial elements. Celest Mech Dyn Astron 92(4):295–336MathSciNetMATHCrossRef Gim D-W, Alfriend KT (2005) Satellite relative motion using differential equinoctial elements. Celest Mech Dyn Astron 92(4):295–336MathSciNetMATHCrossRef
16.
Zurück zum Zitat Sengupta P, Vadali SR, Alfriend KT (2007) Second order state transition for relative motion near perturbed, elliptic orbits. Celest Mech Dyn Astron 97(2):101–129MathSciNetMATHCrossRef Sengupta P, Vadali SR, Alfriend KT (2007) Second order state transition for relative motion near perturbed, elliptic orbits. Celest Mech Dyn Astron 97(2):101–129MathSciNetMATHCrossRef
17.
Zurück zum Zitat Schaub H, Alfriend KT (2001) J2 invariant orbits for spacecraft formations. Celest Mech Dyn Astron 79:77–95MATHCrossRef Schaub H, Alfriend KT (2001) J2 invariant orbits for spacecraft formations. Celest Mech Dyn Astron 79:77–95MATHCrossRef
18.
Zurück zum Zitat Schaub H, Vadali SR, Alfriend KT (2000) Spacecraft formation flying control using mean orbit elements. J Astronaut Sci 48(1):69–87 Schaub H, Vadali SR, Alfriend KT (2000) Spacecraft formation flying control using mean orbit elements. J Astronaut Sci 48(1):69–87
19.
Zurück zum Zitat Schaub H (2004) Relative orbit geometry through classical orbit element differences. AIAA J Guid Contr Dyn 27(5):839–848CrossRef Schaub H (2004) Relative orbit geometry through classical orbit element differences. AIAA J Guid Contr Dyn 27(5):839–848CrossRef
20.
Zurück zum Zitat Fasano G, D’Errico M (2009) Modeling orbital relative motion to enable formation design from application requirements. Celest Mech Dyn Astron 105(1–3):113–139MathSciNetMATHCrossRef Fasano G, D’Errico M (2009) Modeling orbital relative motion to enable formation design from application requirements. Celest Mech Dyn Astron 105(1–3):113–139MathSciNetMATHCrossRef
21.
Zurück zum Zitat Alfriend KT, Schaub H (2000) Dynamic and control of spacecraft formations: challenges and some solutions. J Astronaut Sci 48(2–3):249–267 Alfriend KT, Schaub H (2000) Dynamic and control of spacecraft formations: challenges and some solutions. J Astronaut Sci 48(2–3):249–267
22.
Zurück zum Zitat Vallado DA (2003) Fundamentals of astrodynamics and applications, 2nd edn. Microcosm, Inc., El Segundo, 2001 Vallado DA (2003) Fundamentals of astrodynamics and applications, 2nd edn. Microcosm, Inc., El Segundo, 2001
23.
Zurück zum Zitat Schaub H, Alfriend KT (2002) Hybrid Cartesian and orbit element feedback law for formation flying spacecraft. J Guid Contr Dyn 25(2):387–393CrossRef Schaub H, Alfriend KT (2002) Hybrid Cartesian and orbit element feedback law for formation flying spacecraft. J Guid Contr Dyn 25(2):387–393CrossRef
24.
Zurück zum Zitat Fasano G, D’Errico M (2006) Relative motion model including J2: derivation and application to INSAR. In: 2006 I.E. aerospace conference, Big Sky, MT, USA, March 2006. DOI: 10.1109/AERO.2006.1655771 Fasano G, D’Errico M (2006) Relative motion model including J2: derivation and application to INSAR. In: 2006 I.E. aerospace conference, Big Sky, MT, USA, March 2006. DOI: 10.1109/AERO.2006.1655771
25.
Zurück zum Zitat Vadali SR, Sengupta P, Yan H, Alfriend KT (2008) Fundamental frequencies of satellite relative motion and control of formations. J Guid Contr Dyn 31(5):1239–1248CrossRef Vadali SR, Sengupta P, Yan H, Alfriend KT (2008) Fundamental frequencies of satellite relative motion and control of formations. J Guid Contr Dyn 31(5):1239–1248CrossRef
26.
Zurück zum Zitat Alfriend KT, Vadali SR, Gurfil P, How JP, Breger LS (2010) Formation flying. Butterworth-Heinemann, Oxford, pp 103–112 Alfriend KT, Vadali SR, Gurfil P, How JP, Breger LS (2010) Formation flying. Butterworth-Heinemann, Oxford, pp 103–112
27.
Zurück zum Zitat Chobotov VA (ed) (2002) Orbital mechanics, 3rd edn. AIAA, Reston Chobotov VA (ed) (2002) Orbital mechanics, 3rd edn. AIAA, Reston
28.
Zurück zum Zitat Sabol C, Burns R, McLaughlin CA (2001) Satellite formation flying design and evolution. J Spacecraft Rockets 38(2):270–278CrossRef Sabol C, Burns R, McLaughlin CA (2001) Satellite formation flying design and evolution. J Spacecraft Rockets 38(2):270–278CrossRef
29.
Zurück zum Zitat D'Amico S, Montenbruck O (2006) Proximity operations of formation flying spacecraft using an eccentricity/inclination vector separation. J Guid Contr Dyn 29(3):554–563CrossRef D'Amico S, Montenbruck O (2006) Proximity operations of formation flying spacecraft using an eccentricity/inclination vector separation. J Guid Contr Dyn 29(3):554–563CrossRef
30.
Zurück zum Zitat Sengupta P, Vadali SR, Alfriend KT (2008) Averaged relative motion and applications to formation flight near perturbed orbits. J Guid Contr Dyn 31(2):258–272CrossRef Sengupta P, Vadali SR, Alfriend KT (2008) Averaged relative motion and applications to formation flight near perturbed orbits. J Guid Contr Dyn 31(2):258–272CrossRef
31.
Zurück zum Zitat Melton RG (2000) Time-explicit representation of relative motion between elliptical orbits. J Guid Contr Dyn 23(4):604–610CrossRef Melton RG (2000) Time-explicit representation of relative motion between elliptical orbits. J Guid Contr Dyn 23(4):604–610CrossRef
32.
Zurück zum Zitat Lawden DF (1963) Optimal trajectories for space navigation. Butterworths, LondonMATH Lawden DF (1963) Optimal trajectories for space navigation. Butterworths, LondonMATH
33.
Zurück zum Zitat de Vries JP (1963) Elliptic elements in terms of small increments of position and velocity components. AIAA J 1(11):2626–2629CrossRef de Vries JP (1963) Elliptic elements in terms of small increments of position and velocity components. AIAA J 1(11):2626–2629CrossRef
34.
Zurück zum Zitat Yamanaka K, Ankersen F (2002) New state transition matrix for relative motion on an arbitrary elliptical orbit. J Guid Contr Dyn 25(1):60–66CrossRef Yamanaka K, Ankersen F (2002) New state transition matrix for relative motion on an arbitrary elliptical orbit. J Guid Contr Dyn 25(1):60–66CrossRef
35.
Zurück zum Zitat Inalhan G, Tillerson MJ, How J (2002) Relative dynamics and control of spacecraft formations in eccentric orbits. J Guid Contr Dyn 25(1):48–59CrossRef Inalhan G, Tillerson MJ, How J (2002) Relative dynamics and control of spacecraft formations in eccentric orbits. J Guid Contr Dyn 25(1):48–59CrossRef
36.
Zurück zum Zitat Ketema Y (2005) An analytic solution for relative motion with an elliptic reference orbit. J Astronaut Sci 53(4):373–389MathSciNet Ketema Y (2005) An analytic solution for relative motion with an elliptic reference orbit. J Astronaut Sci 53(4):373–389MathSciNet
37.
Zurück zum Zitat Lane C, Axelrad P (2006) Formation design in eccentric orbits using linearized equations of relative motion. J Guid Contr Dyn 29(1):146–160CrossRef Lane C, Axelrad P (2006) Formation design in eccentric orbits using linearized equations of relative motion. J Guid Contr Dyn 29(1):146–160CrossRef
38.
Zurück zum Zitat Broucke RA (2003) Solution of the elliptic rendezvous problem with the time as independent variable. J Guid Contr Dyn 26(4):615–621CrossRef Broucke RA (2003) Solution of the elliptic rendezvous problem with the time as independent variable. J Guid Contr Dyn 26(4):615–621CrossRef
39.
Zurück zum Zitat Sengupta P, Vadali SR (2007) Relative motion and the geometry of formations in Keplerian elliptic orbits. J Guid Contr Dyn 30(4):953–964CrossRef Sengupta P, Vadali SR (2007) Relative motion and the geometry of formations in Keplerian elliptic orbits. J Guid Contr Dyn 30(4):953–964CrossRef
40.
Zurück zum Zitat Sengupta P, Vadali SR, Alfriend KT (2004) Modeling and control of satellite formations in high eccentricity orbits. J Astronaut Sci 52(1):149–168MathSciNet Sengupta P, Vadali SR, Alfriend KT (2004) Modeling and control of satellite formations in high eccentricity orbits. J Astronaut Sci 52(1):149–168MathSciNet
41.
Zurück zum Zitat Gens R, van Genderen JL (1996) SAR interferometry-issues, techniques applications. Int J Rem Sens 17:1803–1835CrossRef Gens R, van Genderen JL (1996) SAR interferometry-issues, techniques applications. Int J Rem Sens 17:1803–1835CrossRef
43.
Zurück zum Zitat Li FK, Goldstein RM (1990) Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Trans Geosci Rem Sens 28(1):88–97CrossRef Li FK, Goldstein RM (1990) Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Trans Geosci Rem Sens 28(1):88–97CrossRef
44.
Zurück zum Zitat Moccia A, Vetrella S (1992) A tethered interferometric synthetic aperture radar (SAR) for a topographic mission. IEEE Trans Geosci Rem Sens 30(1):103–109CrossRef Moccia A, Vetrella S (1992) A tethered interferometric synthetic aperture radar (SAR) for a topographic mission. IEEE Trans Geosci Rem Sens 30(1):103–109CrossRef
45.
Zurück zum Zitat Massonnet D (2001) Capabilities and limitations of the interferometric cartwheel. IEEE Trans Geosci Rem Sens 39(3):506–520CrossRef Massonnet D (2001) Capabilities and limitations of the interferometric cartwheel. IEEE Trans Geosci Rem Sens 39(3):506–520CrossRef
46.
Zurück zum Zitat Moccia A, Fasano G (2005) Analysis of spaceborne tandem configurations for complementing COSMO with SAR interferometry. EURASIP J Appl Signal Proces 2005(20):3304–3315MATHCrossRef Moccia A, Fasano G (2005) Analysis of spaceborne tandem configurations for complementing COSMO with SAR interferometry. EURASIP J Appl Signal Proces 2005(20):3304–3315MATHCrossRef
47.
Zurück zum Zitat Reigber A, Moreira A (2000) First demonstration of SAR tomography using multibaseline L-band data. IEEE Trans Geosci Rem Sens 38(5):2142–2152CrossRef Reigber A, Moreira A (2000) First demonstration of SAR tomography using multibaseline L-band data. IEEE Trans Geosci Rem Sens 38(5):2142–2152CrossRef
48.
Zurück zum Zitat Richards JA (2009) Interferometric and tomographic SAR. In: Remote sensing with imaging radar. Springer, Berlin/Heidelberg, pp 209–215CrossRef Richards JA (2009) Interferometric and tomographic SAR. In: Remote sensing with imaging radar. Springer, Berlin/Heidelberg, pp 209–215CrossRef
49.
Zurück zum Zitat Fornaro G, Serafino F (2006) Imaging of single and double scatterers in urban areas via SAR tomography. IEEE Trans Geosci Rem Sens 44(12):3497–3505CrossRef Fornaro G, Serafino F (2006) Imaging of single and double scatterers in urban areas via SAR tomography. IEEE Trans Geosci Rem Sens 44(12):3497–3505CrossRef
50.
Zurück zum Zitat Renga A, Fasano G (2011) Analysis of formation geometries for multistatic SAR tomography. Internal note, Department of Aerospace Engineering, University of Naples “Federico II” Renga A, Fasano G (2011) Analysis of formation geometries for multistatic SAR tomography. Internal note, Department of Aerospace Engineering, University of Naples “Federico II”
51.
Zurück zum Zitat Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88(3):333–382CrossRef Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88(3):333–382CrossRef
52.
Zurück zum Zitat Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Rem Sens 45(11):3317–3341CrossRef Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Rem Sens 45(11):3317–3341CrossRef
53.
Zurück zum Zitat D’Errico M, Moccia A (2003) Attitude and antenna pointing design of bistatic radar formations. IEEE Trans Aerosp Electron Sys 39(3):949–960CrossRef D’Errico M, Moccia A (2003) Attitude and antenna pointing design of bistatic radar formations. IEEE Trans Aerosp Electron Sys 39(3):949–960CrossRef
54.
Zurück zum Zitat D’Errico M, Fasano G (2008) Design of interferometric and bistatic mission phases of COSMO/SkyMed constellation. Acta Astronaut 62(2–3):97–111CrossRef D’Errico M, Fasano G (2008) Design of interferometric and bistatic mission phases of COSMO/SkyMed constellation. Acta Astronaut 62(2–3):97–111CrossRef
55.
Zurück zum Zitat D’Errico M, Fasano G (2010) Relative trajectory design for bistatic SAR missions. In: Sandau R, Roeser H-P, Valenzuela A (eds) Small satellite missions for earth observation. Springer, Berlin/Heidelberg, pp 145–154CrossRef D’Errico M, Fasano G (2010) Relative trajectory design for bistatic SAR missions. In: Sandau R, Roeser H-P, Valenzuela A (eds) Small satellite missions for earth observation. Springer, Berlin/Heidelberg, pp 145–154CrossRef
Metadaten
Titel
Relative Trajectory Design
verfasst von
Marco D’Errico
Giancarmine Fasano
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-4541-8_3

    Premium Partner