Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

31.05.2016 | Original Article | Ausgabe 5/2017

International Journal of Machine Learning and Cybernetics 5/2017

Research on denoising sparse autoencoder

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 5/2017
Autoren:
Lingheng Meng, Shifei Ding, Yu Xue

Abstract

Autoencoder can learn the structure of data adaptively and represent data efficiently. These properties make autoencoder not only suit huge volume and variety of data well but also overcome expensive designing cost and poor generalization. Moreover, using autoencoder in deep learning to implement feature extraction could draw better classification accuracy. However, there exist poor robustness and overfitting problems when utilizing autoencoder. In order to extract useful features, meanwhile improve robustness and overcome overfitting, we studied denoising sparse autoencoder through adding corrupting operation and sparsity constraint to traditional autoencoder. The results suggest that different autoencoders mentioned in this paper have some close relation and the model we researched can extract interesting features which can reconstruct original data well. In addition, all results show a promising approach to utilizing the proposed autoencoder to build deep models.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2017

International Journal of Machine Learning and Cybernetics 5/2017 Zur Ausgabe