Skip to main content

2017 | OriginalPaper | Buchkapitel

Resource Allocation in Body Area Networks for Energy Harvesting Healthcare Monitoring

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Health monitoring body area networks (BANs) have the potential to create a paradigm shift in providing personal healthcare “Johny, Anpalagan (IEEE Potentials 33(2):21-25, 2014) [1].” A BAN consists of multiple wireless body sensors attached to or implanted in the human body to continuously monitor the patient’s vital signs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Finite storage capacity extension has been studied in [70].
 
Literatur
1.
Zurück zum Zitat B. Johny and A. Anpalagan, “Body area sensor networks: Requirements, operations, and challenges,” IEEE Potentials, vol. 33, no. 2, pp. 21–25, 2014.CrossRef B. Johny and A. Anpalagan, “Body area sensor networks: Requirements, operations, and challenges,” IEEE Potentials, vol. 33, no. 2, pp. 21–25, 2014.CrossRef
2.
Zurück zum Zitat T. Starner, “Human-powered wearable computing,” IBM systems Journal, vol. 35, no. 3.4, pp. 618–629, 1996. T. Starner, “Human-powered wearable computing,” IBM systems Journal, vol. 35, no. 3.4, pp. 618–629, 1996.
3.
Zurück zum Zitat F. Goodarzy, E. S. Skafidas, and S. Gambini, “Feasibility of energy-autonomous wireless microsensors for biomedical applications: Powering and communication,” IEEE Reviews in Biomedical Engineering, vol. 8, pp. 17–29, 2015.CrossRef F. Goodarzy, E. S. Skafidas, and S. Gambini, “Feasibility of energy-autonomous wireless microsensors for biomedical applications: Powering and communication,” IEEE Reviews in Biomedical Engineering, vol. 8, pp. 17–29, 2015.CrossRef
4.
Zurück zum Zitat M.-L. Ku, W. Li, Y. Chen, and K. R. Liu, “Advances in energy harvesting communications: Past, present, and future challenges,” IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1384–1412, 2016.CrossRef M.-L. Ku, W. Li, Y. Chen, and K. R. Liu, “Advances in energy harvesting communications: Past, present, and future challenges,” IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1384–1412, 2016.CrossRef
5.
Zurück zum Zitat Y. Zhang, F. Zhang, Y. Shakhsheer, J. D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E. J. Carlson, A. Wood, B. H. Calhoun, and B. P. Otis, “A batteryless 19 \(\mu \)W MICS/ISM-band energy harvesting body sensor node SoC for ExG applications,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 199–213, 2013.CrossRef Y. Zhang, F. Zhang, Y. Shakhsheer, J. D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E. J. Carlson, A. Wood, B. H. Calhoun, and B. P. Otis, “A batteryless 19 \(\mu \)W MICS/ISM-band energy harvesting body sensor node SoC for ExG applications,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 199–213, 2013.CrossRef
6.
Zurück zum Zitat V. Misra, A. Bozkurt, B. Calhoun, T. Jackson, J. S. Jur, J. Lach, B. Lee, J. Muth, O. Oralkan, M. Ozturk, S. Trolier-McKinstry, D. Vashaee, D. Wentzloff, and Y. Zhu, “Flexible technologies for self-powered wearable health and environmental sensing,” Proceedings of the IEEE, vol. 103, no. 4, pp. 665–681, 2015.CrossRef V. Misra, A. Bozkurt, B. Calhoun, T. Jackson, J. S. Jur, J. Lach, B. Lee, J. Muth, O. Oralkan, M. Ozturk, S. Trolier-McKinstry, D. Vashaee, D. Wentzloff, and Y. Zhu, “Flexible technologies for self-powered wearable health and environmental sensing,” Proceedings of the IEEE, vol. 103, no. 4, pp. 665–681, 2015.CrossRef
7.
Zurück zum Zitat O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: Optimal policies,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 8, pp. 1732–1743, 2011.CrossRef O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: Optimal policies,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 8, pp. 1732–1743, 2011.CrossRef
8.
Zurück zum Zitat K. Tutuncuoglu and A. Yener, “Optimum transmission policies for battery limited energy harvesting nodes,” IEEE Transactions on Wireless Communications, vol. 11, no. 3, pp. 1180–1189, 2012.CrossRef K. Tutuncuoglu and A. Yener, “Optimum transmission policies for battery limited energy harvesting nodes,” IEEE Transactions on Wireless Communications, vol. 11, no. 3, pp. 1180–1189, 2012.CrossRef
9.
Zurück zum Zitat O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener, “Fundamental limits of energy harvesting communications,” IEEE Communications Magazine, vol. 53, no. 4, pp. 126–132, 2015.CrossRef O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener, “Fundamental limits of energy harvesting communications,” IEEE Communications Magazine, vol. 53, no. 4, pp. 126–132, 2015.CrossRef
10.
Zurück zum Zitat S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and K. Huang, “Energy harvesting wireless communications: A review of recent advances,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 360–381, 2015.CrossRef S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and K. Huang, “Energy harvesting wireless communications: A review of recent advances,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 360–381, 2015.CrossRef
11.
Zurück zum Zitat A. Seyedi and B. Sikdar, “Modeling and analysis of energy harvesting nodes in body sensor networks,” in Proc. 5th International Summer School and Symposium on Medical Devices and Biosensors, 2008, pp. 175–178. A. Seyedi and B. Sikdar, “Modeling and analysis of energy harvesting nodes in body sensor networks,” in Proc. 5th International Summer School and Symposium on Medical Devices and Biosensors, 2008, pp. 175–178.
12.
Zurück zum Zitat A. Seyedi and B. Sikdar, “Energy efficient transmission strategies for body sensor networks with energy harvesting,” IEEE Transactions on Communications, vol. 58, no. 7, pp. 2116–2126, 2010. A. Seyedi and B. Sikdar, “Energy efficient transmission strategies for body sensor networks with energy harvesting,” IEEE Transactions on Communications, vol. 58, no. 7, pp. 2116–2126, 2010.
13.
Zurück zum Zitat J. Ventura and K. Chowdhury, “Markov modeling of energy harvesting body sensor networks,” in Proc. IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, 2011, pp. 2168–2172. J. Ventura and K. Chowdhury, “Markov modeling of energy harvesting body sensor networks,” in Proc. IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, 2011, pp. 2168–2172.
14.
Zurück zum Zitat Y. He, W. Zhu, and L. Guan, “Optimal resource allocation for pervasive health monitoring systems with body sensor networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 11, pp. 1558–1575, 2011.CrossRef Y. He, W. Zhu, and L. Guan, “Optimal resource allocation for pervasive health monitoring systems with body sensor networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 11, pp. 1558–1575, 2011.CrossRef
15.
Zurück zum Zitat S. Manfredi, “Congestion control for differentiated healthcare service delivery in emerging heterogeneous wireless body area networks,” IEEE Wireless Communications, vol. 21, no. 2, pp. 81–90, 2014.CrossRef S. Manfredi, “Congestion control for differentiated healthcare service delivery in emerging heterogeneous wireless body area networks,” IEEE Wireless Communications, vol. 21, no. 2, pp. 81–90, 2014.CrossRef
16.
Zurück zum Zitat E. Ibarra, A. Antonopoulos, E. Kartsakli, J. J. Rodrigues, and C. Verikoukis, “QoS-aware energy management in body sensor nodes powered by human energy harvesting,” IEEE Sensors Journal, vol. 16, no. 2, pp. 542–549, 2016.CrossRef E. Ibarra, A. Antonopoulos, E. Kartsakli, J. J. Rodrigues, and C. Verikoukis, “QoS-aware energy management in body sensor nodes powered by human energy harvesting,” IEEE Sensors Journal, vol. 16, no. 2, pp. 542–549, 2016.CrossRef
17.
Zurück zum Zitat S. Ayazian, V. A. Akhavan, E. Soenen, and A. Hassibi, “A photovoltaic-driven and energy-autonomous CMOS implantable sensor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 4, pp. 336–343, 2012.CrossRef S. Ayazian, V. A. Akhavan, E. Soenen, and A. Hassibi, “A photovoltaic-driven and energy-autonomous CMOS implantable sensor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 4, pp. 336–343, 2012.CrossRef
18.
Zurück zum Zitat Y. K. Tan and S. K. Panda, “Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4424–4435, 2011.CrossRef Y. K. Tan and S. K. Panda, “Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4424–4435, 2011.CrossRef
19.
Zurück zum Zitat A. Liberale, E. Dallago, and A. L. Barnabei, “Energy harvesting system for wireless body sensor nodes,” in Proc. IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, 2014, pp. 416–419. A. Liberale, E. Dallago, and A. L. Barnabei, “Energy harvesting system for wireless body sensor nodes,” in Proc. IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, 2014, pp. 416–419.
20.
Zurück zum Zitat W. Y. Toh, Y. K. Tan, W. S. Koh, and L. Siek, “Autonomous wearable sensor nodes with flexible energy harvesting,” IEEE Sensors Journal, vol. 14, no. 7, pp. 2299–2306, 2014.CrossRef W. Y. Toh, Y. K. Tan, W. S. Koh, and L. Siek, “Autonomous wearable sensor nodes with flexible energy harvesting,” IEEE Sensors Journal, vol. 14, no. 7, pp. 2299–2306, 2014.CrossRef
21.
Zurück zum Zitat J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive computing, vol. 4, no. 1, pp. 18–27, 2005.CrossRef J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive computing, vol. 4, no. 1, pp. 18–27, 2005.CrossRef
22.
Zurück zum Zitat W. S. Wang, T. O’Donnell, N. Wang, M. Hayes, B. O’Flynn, and C. O’Mathuna, “Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems,” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 6, no. 2, p. 6, 2010. W. S. Wang, T. O’Donnell, N. Wang, M. Hayes, B. O’Flynn, and C. O’Mathuna, “Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems,” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 6, no. 2, p. 6, 2010.
23.
Zurück zum Zitat S. Basagni, M. Y. Naderi, C. Petrioli, and D. Spenza, “Wireless sensor networks with energy harvesting,” Mobile Ad Hoc Networking: The Cutting Edge Directions, pp. 701–736, 2013. S. Basagni, M. Y. Naderi, C. Petrioli, and D. Spenza, “Wireless sensor networks with energy harvesting,” Mobile Ad Hoc Networking: The Cutting Edge Directions, pp. 701–736, 2013.
24.
Zurück zum Zitat D. C. Hoang, Y. K. Tan, H. B. Chng, and S. K. Panda, “Thermal energy harvesting from human warmth for wireless body area network in medical healthcare system,” in Proc. International Conference on Power Electronics and Drive Systems (PEDS), 2009, pp. 1277–1282. D. C. Hoang, Y. K. Tan, H. B. Chng, and S. K. Panda, “Thermal energy harvesting from human warmth for wireless body area network in medical healthcare system,” in Proc. International Conference on Power Electronics and Drive Systems (PEDS), 2009, pp. 1277–1282.
25.
Zurück zum Zitat R. Kappel, W. Pachler, M. Auer, W. Pribyl, G. Hofer, and G. Holweg, “Using thermoelectric energy harvesting to power a self-sustaining temperature sensor in body area networks,” in Proc. IEEE International Conference on Industrial Technology (ICIT), 2013, pp. 787–792. R. Kappel, W. Pachler, M. Auer, W. Pribyl, G. Hofer, and G. Holweg, “Using thermoelectric energy harvesting to power a self-sustaining temperature sensor in body area networks,” in Proc. IEEE International Conference on Industrial Technology (ICIT), 2013, pp. 787–792.
26.
Zurück zum Zitat G. Wu and X. Yu, “System design on thermoelectic energy harvesting from body heat,” in Proc. 39th Annual Northeast Bioengineering Conference (NEBEC), 2013, pp. 157–158. G. Wu and X. Yu, “System design on thermoelectic energy harvesting from body heat,” in Proc. 39th Annual Northeast Bioengineering Conference (NEBEC), 2013, pp. 157–158.
27.
Zurück zum Zitat H. P. Wong and Z. Dahari, “Human body parts heat energy harvesting using thermoelectric module,” in Proc. IEEE Conference on Energy Conversion (CENCON), 2015, pp. 211–214. H. P. Wong and Z. Dahari, “Human body parts heat energy harvesting using thermoelectric module,” in Proc. IEEE Conference on Energy Conversion (CENCON), 2015, pp. 211–214.
28.
Zurück zum Zitat S. Jo, M. Kim, M. Kim, and Y. Kim, “Flexible thermoelectric generator for human body heat energy harvesting,” Electronics letters, vol. 48, no. 16, pp. 1013–1015, 2012.CrossRef S. Jo, M. Kim, M. Kim, and Y. Kim, “Flexible thermoelectric generator for human body heat energy harvesting,” Electronics letters, vol. 48, no. 16, pp. 1013–1015, 2012.CrossRef
29.
Zurück zum Zitat A. Ghosh, Meenakshi, S. Khalid, V. P. Harigovindan, “Performance analysis of wireless body area network with thermal energy harvesting,” in Proc. Global Conference on Communication Technologies (GCCT), 2015, pp. 916–920. A. Ghosh, Meenakshi, S. Khalid, V. P. Harigovindan, “Performance analysis of wireless body area network with thermal energy harvesting,” in Proc. Global Conference on Communication Technologies (GCCT), 2015, pp. 916–920.
30.
Zurück zum Zitat M. Wahbah, M. Alhawari, B. Mohammad, H. Saleh, and M. Ismail, “Characterization of human body-based thermal and vibration energy harvesting for wearable devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 4, no. 3, pp. 354–363, 2014.CrossRef M. Wahbah, M. Alhawari, B. Mohammad, H. Saleh, and M. Ismail, “Characterization of human body-based thermal and vibration energy harvesting for wearable devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 4, no. 3, pp. 354–363, 2014.CrossRef
31.
Zurück zum Zitat V. Leonov, “Thermoelectric energy harvesting of human body heat for wearable sensors,” IEEE Sensors Journal, vol. 13, no. 6, pp. 2284–2291, 2013.CrossRef V. Leonov, “Thermoelectric energy harvesting of human body heat for wearable sensors,” IEEE Sensors Journal, vol. 13, no. 6, pp. 2284–2291, 2013.CrossRef
32.
Zurück zum Zitat N. B. Amor, O. Kanoun, A. Lay-Ekuakille, G. Specchia, G. Vendramin, and A. Trotta, “Energy harvesting from human body for biomedical autonomous systems,” Sensors, 2008 IEEE, 2008, pp. 678–680. N. B. Amor, O. Kanoun, A. Lay-Ekuakille, G. Specchia, G. Vendramin, and A. Trotta, “Energy harvesting from human body for biomedical autonomous systems,” Sensors, 2008 IEEE, 2008, pp. 678–680.
33.
Zurück zum Zitat P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, “Energy harvesting from human and machine motion for wireless electronic devices,” Proceedings of the IEEE, vol. 96, no. 9, pp. 1457–1486, 2008.CrossRef P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, “Energy harvesting from human and machine motion for wireless electronic devices,” Proceedings of the IEEE, vol. 96, no. 9, pp. 1457–1486, 2008.CrossRef
34.
Zurück zum Zitat G. De Pasquale and A. Somà, “Energy harvesting from human motion with piezo fibers for the body monitoring by MEMS sensors,” in Proc. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2013, pp. 1–6. G. De Pasquale and A. Somà, “Energy harvesting from human motion with piezo fibers for the body monitoring by MEMS sensors,” in Proc. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2013, pp. 1–6.
35.
Zurück zum Zitat L. Xie and M. Cai, “Human motion: Sustainable power for wearable electronics,” IEEE Pervasive Computing, vol. 13, no. 4, pp. 42–49, 2014.CrossRef L. Xie and M. Cai, “Human motion: Sustainable power for wearable electronics,” IEEE Pervasive Computing, vol. 13, no. 4, pp. 42–49, 2014.CrossRef
36.
Zurück zum Zitat C. Sauer, M. Stanacevic, G. Cauwenberghs, and N. Thakor, “Power harvesting and telemetry in CMOS for implanted devices,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 12, pp. 2605–2613, 2005.CrossRef C. Sauer, M. Stanacevic, G. Cauwenberghs, and N. Thakor, “Power harvesting and telemetry in CMOS for implanted devices,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 12, pp. 2605–2613, 2005.CrossRef
37.
Zurück zum Zitat J. Cheng, L. Xia, C. Ma, Y. Lian, X. Xu, C. P. Yue, Z. Hong, and P. Y. Chiang, “A near-threshold, multi-node, wireless body area sensor network powered by RF energy harvesting,” in Proc. IEEE Custom Integrated Circuits Conference, 2012, pp. 1–4. J. Cheng, L. Xia, C. Ma, Y. Lian, X. Xu, C. P. Yue, Z. Hong, and P. Y. Chiang, “A near-threshold, multi-node, wireless body area sensor network powered by RF energy harvesting,” in Proc. IEEE Custom Integrated Circuits Conference, 2012, pp. 1–4.
38.
Zurück zum Zitat N. Barroca, H. M. Saraiva, P. T. Gouveia, J. Tavares, L. M. Borges, F. J. Velez, C. Loss, R. Salvado, P. Pinho, R. Gonçalves, N. B. Carvalho, R. Chavez-Santiago, I. Balasingham, “Antennas and circuits for ambient RF energy harvesting in wireless body area networks,” in Proc. IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2013, pp. 532–537. N. Barroca, H. M. Saraiva, P. T. Gouveia, J. Tavares, L. M. Borges, F. J. Velez, C. Loss, R. Salvado, P. Pinho, R. Gonçalves, N. B. Carvalho, R. Chavez-Santiago, I. Balasingham, “Antennas and circuits for ambient RF energy harvesting in wireless body area networks,” in Proc. IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2013, pp. 532–537.
39.
Zurück zum Zitat Z. Liu, Z. Zhong, and Y. X. Guo, “High-efficiency triple-band ambient RF energy harvesting for wireless body sensor network,” in Proc. IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio), 2014, pp. 1–3. Z. Liu, Z. Zhong, and Y. X. Guo, “High-efficiency triple-band ambient RF energy harvesting for wireless body sensor network,” in Proc. IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio), 2014, pp. 1–3.
40.
Zurück zum Zitat S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and M. M. Tentzeris, “Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms,” Proceedings of the IEEE, vol. 102, no. 11, pp. 1649–1666, 2014.CrossRef S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and M. M. Tentzeris, “Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms,” Proceedings of the IEEE, vol. 102, no. 11, pp. 1649–1666, 2014.CrossRef
41.
Zurück zum Zitat R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989–2001, 2013.CrossRef R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989–2001, 2013.CrossRef
42.
Zurück zum Zitat B. I. Rapoport, J. T. Kedzierski, and R. Sarpeshkar, “A glucose fuel cell for implantable brain-machine interfaces,” PloS one, vol. 7, no. 6, p. e38436, 2012.CrossRef B. I. Rapoport, J. T. Kedzierski, and R. Sarpeshkar, “A glucose fuel cell for implantable brain-machine interfaces,” PloS one, vol. 7, no. 6, p. e38436, 2012.CrossRef
43.
Zurück zum Zitat A. Zebda, S. Cosnier, J.-P. Alcaraz, M. Holzinger, A. Le Goff, C. Gondran, F. Boucher, F. Giroud, K. Gorgy, H. Lamraoui, P. Cinquin, “Single glucose biofuel cells implanted in rats power electronic devices,” Scientific reports, vol. 3, p. 1516, 2013. A. Zebda, S. Cosnier, J.-P. Alcaraz, M. Holzinger, A. Le Goff, C. Gondran, F. Boucher, F. Giroud, K. Gorgy, H. Lamraoui, P. Cinquin, “Single glucose biofuel cells implanted in rats power electronic devices,” Scientific reports, vol. 3, p. 1516, 2013.
44.
Zurück zum Zitat C.-Y. Sue and N.-C. Tsai, “Human powered MEMS-based energy harvest devices,” Applied Energy, vol. 93, pp. 390–403, 2012.CrossRef C.-Y. Sue and N.-C. Tsai, “Human powered MEMS-based energy harvest devices,” Applied Energy, vol. 93, pp. 390–403, 2012.CrossRef
45.
Zurück zum Zitat F. Davis and S. P. Higson, “Biofuel cells - recent advances and applications,” Biosensors and Bioelectronics, vol. 22, no. 7, pp. 1224–1235, 2007.CrossRef F. Davis and S. P. Higson, “Biofuel cells - recent advances and applications,” Biosensors and Bioelectronics, vol. 22, no. 7, pp. 1224–1235, 2007.CrossRef
46.
Zurück zum Zitat J. Yang and S. Ulukus, “Optimal packet scheduling in an energy harvesting communication system,” IEEE Transactions on Communications, vol. 60, no. 1, pp. 220–230, 2012.CrossRef J. Yang and S. Ulukus, “Optimal packet scheduling in an energy harvesting communication system,” IEEE Transactions on Communications, vol. 60, no. 1, pp. 220–230, 2012.CrossRef
47.
Zurück zum Zitat M. Gregori and M. Payaró, “Energy-efficient transmission for wireless energy harvesting nodes,” IEEE Transactions on Wireless Communications, vol. 12, no. 3, pp. 1244–1254, 2013.CrossRef M. Gregori and M. Payaró, “Energy-efficient transmission for wireless energy harvesting nodes,” IEEE Transactions on Wireless Communications, vol. 12, no. 3, pp. 1244–1254, 2013.CrossRef
48.
Zurück zum Zitat B. Varan and A. Yener, “Delay constrained energy harvesting networks with limited energy and data storage,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp. 1550–1564, 2016.CrossRef B. Varan and A. Yener, “Delay constrained energy harvesting networks with limited energy and data storage,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp. 1550–1564, 2016.CrossRef
49.
Zurück zum Zitat F. Shan, J. Luo, W. Wu, M. Li, and X. Shen, “Discrete rate scheduling for packets with individual deadlines in energy harvesting systems,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 438–451, 2015.CrossRef F. Shan, J. Luo, W. Wu, M. Li, and X. Shen, “Discrete rate scheduling for packets with individual deadlines in energy harvesting systems,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 438–451, 2015.CrossRef
50.
Zurück zum Zitat S. Wei, W. Guan, and K. R. Liu, “Power scheduling for energy harvesting wireless communications with battery capacity constraint,” IEEE Transactions on Wireless Communications, vol. 14, no. 8, pp. 4640–4653, 2015.CrossRef S. Wei, W. Guan, and K. R. Liu, “Power scheduling for energy harvesting wireless communications with battery capacity constraint,” IEEE Transactions on Wireless Communications, vol. 14, no. 8, pp. 4640–4653, 2015.CrossRef
51.
Zurück zum Zitat C. Huang, R. Zhang, and S. Cui, “Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints,” IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp. 1074–1087, 2014.CrossRef C. Huang, R. Zhang, and S. Cui, “Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints,” IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp. 1074–1087, 2014.CrossRef
52.
Zurück zum Zitat F. M. Ozcelik, G. Uctu, and E. Uysal-Biyikoglu, “Minimization of transmission duration of data packets over an energy harvesting fading channel,” IEEE Communications Letters, vol. 12, no. 16, pp. 1968–1971, 2012.CrossRef F. M. Ozcelik, G. Uctu, and E. Uysal-Biyikoglu, “Minimization of transmission duration of data packets over an energy harvesting fading channel,” IEEE Communications Letters, vol. 12, no. 16, pp. 1968–1971, 2012.CrossRef
53.
Zurück zum Zitat N. Roseveare and B. Natarajan, “An alternative perspective on utility maximization in energy-harvesting wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 1, pp. 344–356, 2014.CrossRef N. Roseveare and B. Natarajan, “An alternative perspective on utility maximization in energy-harvesting wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 1, pp. 344–356, 2014.CrossRef
54.
Zurück zum Zitat O. Orhan, D. Gündüz, and E. Erkip, “Energy harvesting broadband communication systems with processing energy cost,” IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6095–6107, 2014.CrossRef O. Orhan, D. Gündüz, and E. Erkip, “Energy harvesting broadband communication systems with processing energy cost,” IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6095–6107, 2014.CrossRef
55.
Zurück zum Zitat K. Tutuncuoglu, A. Yener, and S. Ulukus, “Optimum policies for an energy harvesting transmitter under energy storage losses,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 467–481, 2015.CrossRef K. Tutuncuoglu, A. Yener, and S. Ulukus, “Optimum policies for an energy harvesting transmitter under energy storage losses,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 467–481, 2015.CrossRef
56.
Zurück zum Zitat K. Tutuncuoglu and A. Yener, “Communicating with energy harvesting transmitters and receivers,” in Proc. Information Theory and Applications Workshop (ITA), 2012, pp. 240–245. K. Tutuncuoglu and A. Yener, “Communicating with energy harvesting transmitters and receivers,” in Proc. Information Theory and Applications Workshop (ITA), 2012, pp. 240–245.
57.
Zurück zum Zitat S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004. S. Boyd and L. Vandenberghe, Convex optimization.   Cambridge university press, 2004.
58.
Zurück zum Zitat R. Srivastava and C. E. Koksal, “Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage,” IEEE/ACM Transactions on Networking, vol. 21, no. 4, pp. 1049–1062, 2013.CrossRef R. Srivastava and C. E. Koksal, “Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage,” IEEE/ACM Transactions on Networking, vol. 21, no. 4, pp. 1049–1062, 2013.CrossRef
59.
Zurück zum Zitat V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy management policies for energy harvesting sensor nodes,” IEEE Transactions on Wireless Communications, vol. 9, no. 4, pp. 1326–1336, 2010.CrossRef V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy management policies for energy harvesting sensor nodes,” IEEE Transactions on Wireless Communications, vol. 9, no. 4, pp. 1326–1336, 2010.CrossRef
60.
Zurück zum Zitat N. Michelusi, K. Stamatiou, and M. Zorzi, “Transmission policies for energy harvesting sensors with time-correlated energy supply,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 2988–3001, 2013.CrossRef N. Michelusi, K. Stamatiou, and M. Zorzi, “Transmission policies for energy harvesting sensors with time-correlated energy supply,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 2988–3001, 2013.CrossRef
61.
Zurück zum Zitat P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach to energy harvesting communication system optimization,” IEEE Transactions on Wireless Communications, vol. 12, no. 4, pp. 1872–1882, 2013.CrossRef P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach to energy harvesting communication system optimization,” IEEE Transactions on Wireless Communications, vol. 12, no. 4, pp. 1872–1882, 2013.CrossRef
62.
Zurück zum Zitat S. Mao, M. H. Cheung, and V. W. Wong, “Joint energy allocation for sensing and transmission in rechargeable wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2862–2875, 2014.CrossRef S. Mao, M. H. Cheung, and V. W. Wong, “Joint energy allocation for sensing and transmission in rechargeable wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2862–2875, 2014.CrossRef
63.
Zurück zum Zitat A. Kazerouni and A. Ozgur, “Optimal online strategies for an energy harvesting system with Bernoulli energy recharges,” in Proc. 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015, pp. 235–242. A. Kazerouni and A. Ozgur, “Optimal online strategies for an energy harvesting system with Bernoulli energy recharges,” in Proc. 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015, pp. 235–242.
64.
Zurück zum Zitat Y. Dong, F. Farnia, and A. Ozgur, “Near optimal energy control and approximate capacity of energy harvesting communication,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 540–557, 2015.CrossRef Y. Dong, F. Farnia, and A. Ozgur, “Near optimal energy control and approximate capacity of energy harvesting communication,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 540–557, 2015.CrossRef
65.
Zurück zum Zitat D. Shaviv and A. Ozgur, “Universally near optimal online power control for energy harvesting nodes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3620–3631, 2016. D. Shaviv and A. Ozgur, “Universally near optimal online power control for energy harvesting nodes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3620–3631, 2016.
66.
Zurück zum Zitat S. Zhang, A. Seyedi, and B. Sikdar, “An analytical approach to the design of energy harvesting wireless sensor nodes,” IEEE Transactions on Wireless Communications, vol. 12, no. 8, pp. 4010–4024, 2013.CrossRef S. Zhang, A. Seyedi, and B. Sikdar, “An analytical approach to the design of energy harvesting wireless sensor nodes,” IEEE Transactions on Wireless Communications, vol. 12, no. 8, pp. 4010–4024, 2013.CrossRef
67.
Zurück zum Zitat I. Krikidis, G. Zheng, and B. Ottersten, “Harvest-use cooperative networks with half/full-duplex relaying,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), 2013, pp. 4256–4260. I. Krikidis, G. Zheng, and B. Ottersten, “Harvest-use cooperative networks with half/full-duplex relaying,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), 2013, pp. 4256–4260.
68.
Zurück zum Zitat O. Orhan and E. Erkip, “Energy harvesting two-hop communication networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 12, pp. 2658–2670, 2015.CrossRef O. Orhan and E. Erkip, “Energy harvesting two-hop communication networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 12, pp. 2658–2670, 2015.CrossRef
69.
Zurück zum Zitat J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with an energy harvesting rechargeable transmitter,” IEEE Transactions on Wireless Communications, vol. 11, no. 2, pp. 571–583, 2012.CrossRef J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with an energy harvesting rechargeable transmitter,” IEEE Transactions on Wireless Communications, vol. 11, no. 2, pp. 571–583, 2012.CrossRef
70.
Zurück zum Zitat O. Ozel, J. Yang, and S. Ulukus, “Optimal broadcast scheduling for an energy harvesting rechargeable transmitter with a finite capacity battery,” IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp. 2193–2203, 2012.CrossRef O. Ozel, J. Yang, and S. Ulukus, “Optimal broadcast scheduling for an energy harvesting rechargeable transmitter with a finite capacity battery,” IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp. 2193–2203, 2012.CrossRef
71.
Zurück zum Zitat T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.CrossRefMATH T. M. Cover and J. A. Thomas, Elements of Information Theory.   New York: Wiley, 1991.CrossRefMATH
72.
Zurück zum Zitat J. Yang and S. Ulukus, “Optimal packet scheduling in a multiple access channel with energy harvesting transmitters,” Journal of Communications and Networks, vol. 14, no. 2, pp. 140–150, 2012.CrossRef J. Yang and S. Ulukus, “Optimal packet scheduling in a multiple access channel with energy harvesting transmitters,” Journal of Communications and Networks, vol. 14, no. 2, pp. 140–150, 2012.CrossRef
Metadaten
Titel
Resource Allocation in Body Area Networks for Energy Harvesting Healthcare Monitoring
verfasst von
Shiyang Leng
Aylin Yener
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-58280-1_20