Skip to main content

2016 | OriginalPaper | Buchkapitel

Reveal Consistent Spatial-Temporal Patterns from Dynamic Functional Connectivity for Autism Spectrum Disorder Identification

verfasst von : Yingying Zhu, Xiaofeng Zhu, Han Zhang, Wei Gao, Dinggang Shen, Guorong Wu

Erschienen in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Functional magnetic resonance imaging (fMRI) provides a non-invasive way to investigate brain activity. Recently, convergent evidence shows that the correlations of spontaneous fluctuations between two distinct brain regions dynamically change even in resting state, due to the condition-dependent nature of brain activity. Thus, quantifying the patterns of functional connectivity (FC) in a short time period and changes of FC over time can potentially provide valuable insight into both individual-based diagnosis and group comparison. In light of this, we propose a novel computational method to robustly estimate both static and dynamic spatial-temporal connectivity patterns from the observed noisy signals of individual subject. We achieve this goal in two folds: (1) Construct static functional connectivity across brain regions. Due to low signal-to-noise ratio induced by possible non-neural noise, the estimated FC strength is very sensitive and it is hard to define a good threshold to distinguish between real and spurious connections. To alleviate this issue, we propose to optimize FC which is in consensus with not only the low level region-to-region signal correlations but also the similarity of high level principal connection patterns learned from the estimated link-to-link connections. Since brain network is intrinsically sparse, we also encourage sparsity during FC optimization. (2) Characterize dynamic functional connectivity along time. It is hard to synchronize the estimated dynamic FC patterns and the real cognitive state changes, even using learning-based methods. To address these limitations, we further extend above FC optimization method into the spatial-temporal domain by arranging the FC estimations along a set of overlapped sliding windows into a tensor structure as the window slides. Then we employ low rank constraint in the temporal domain assuming there are likely a small number of discrete states that the brain transverses during a short period of time. We applied the learned spatial-temporal patterns from fMRI images to identify autism subjects. Promising classification results have been achieved, suggesting high discrimination power and great potentials in computer assisted diagnosis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Greicius, M., Srivastava, G., Reiss, A., Menon, V.: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. PNAS 101, 4637–4642 (2004)CrossRef Greicius, M., Srivastava, G., Reiss, A., Menon, V.: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. PNAS 101, 4637–4642 (2004)CrossRef
2.
Zurück zum Zitat Amaral, D.G., Schumann, C.M., Nordahl, C.W.: Neuroanatomy of autism. Trends Neurosci. 31, 137–145 (2008)CrossRef Amaral, D.G., Schumann, C.M., Nordahl, C.W.: Neuroanatomy of autism. Trends Neurosci. 31, 137–145 (2008)CrossRef
3.
Zurück zum Zitat van den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 (2010)CrossRef van den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 (2010)CrossRef
4.
Zurück zum Zitat Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., Penna, S.D., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J., Handwerker, D.A., Keilholz, S., Kiviniemi, V., Leopold, D.A., de Pasquale, F., Sporns, O., Walter, M., Chang, C.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)CrossRef Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D., Corbetta, M., Penna, S.D., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J., Handwerker, D.A., Keilholz, S., Kiviniemi, V., Leopold, D.A., de Pasquale, F., Sporns, O., Walter, M., Chang, C.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)CrossRef
5.
Zurück zum Zitat Wee, C.-Y., Yap, P.-T., Shen, D.: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks. CNS Neurosci. Ther. 22, 212–219 (2016)CrossRef Wee, C.-Y., Yap, P.-T., Shen, D.: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks. CNS Neurosci. Ther. 22, 212–219 (2016)CrossRef
6.
Zurück zum Zitat Eavani, H., Satterthwaite, T.D., Gur, R.E., Gur, R.C., Davatzikos, C.: Unsupervised learning of functional network dynamics in resting state fMRI. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 426–437. Springer, Heidelberg (2013)CrossRef Eavani, H., Satterthwaite, T.D., Gur, R.E., Gur, R.C., Davatzikos, C.: Unsupervised learning of functional network dynamics in resting state fMRI. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 426–437. Springer, Heidelberg (2013)CrossRef
7.
Zurück zum Zitat Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefMATH Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefMATH
8.
Zurück zum Zitat Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)CrossRefMATH Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)CrossRefMATH
9.
Zurück zum Zitat Nie, F., Wang, X., Huang, H.: Clustering and projected clustering with adaptive neighbors. In: The 20th International Conference on Knowledge Discovery and Data Mining (2014) Nie, F., Wang, X., Huang, H.: Clustering and projected clustering with adaptive neighbors. In: The 20th International Conference on Knowledge Discovery and Data Mining (2014)
10.
Zurück zum Zitat Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010)CrossRef Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010)CrossRef
11.
Zurück zum Zitat Urs, B., et al.: Dynamic reconfiguration of frontal brain networks during executive cognition in humans. PNAS 112, 11678–11683 (2015)CrossRef Urs, B., et al.: Dynamic reconfiguration of frontal brain networks during executive cognition in humans. PNAS 112, 11678–11683 (2015)CrossRef
12.
Zurück zum Zitat Heung-Il, S., Lee, S.W., Shen, D.: A hybrid of deep network and hidden Markov model for MCI identification with resting-state fMRI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 573–580. Springer, Heidelberg (2015)CrossRef Heung-Il, S., Lee, S.W., Shen, D.: A hybrid of deep network and hidden Markov model for MCI identification with resting-state fMRI. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 573–580. Springer, Heidelberg (2015)CrossRef
13.
Zurück zum Zitat Leonardi, N., et al.: Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. Neuroimage 83, 937–950 (2013)CrossRef Leonardi, N., et al.: Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. Neuroimage 83, 937–950 (2013)CrossRef
14.
Zurück zum Zitat Zhu, Y., Lucey, S.: Convolutional sparse coding for trajectory reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 529–540 (2015)CrossRef Zhu, Y., Lucey, S.: Convolutional sparse coding for trajectory reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 529–540 (2015)CrossRef
Metadaten
Titel
Reveal Consistent Spatial-Temporal Patterns from Dynamic Functional Connectivity for Autism Spectrum Disorder Identification
verfasst von
Yingying Zhu
Xiaofeng Zhu
Han Zhang
Wei Gao
Dinggang Shen
Guorong Wu
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-46720-7_13