Skip to main content
Erschienen in: Journal of Materials Science 2/2019

26.09.2018 | Review

Review and assessment of photovoltaic performance of graphene/Si heterojunction solar cells

verfasst von: Mohd Faizol Abdullah, Abdul Manaf Hashim

Erschienen in: Journal of Materials Science | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The number of studies on graphene/Si heterojunction solar cells has increased dramatically in recent years. The integration of graphene into Si photovoltaic has resulted in high power conversion efficiencies exceeding 15% in several notable applications. The need for a single compilation to discuss the issues recently discovered in the current works is necessary to help with a smooth progression and, most importantly, to understand the best direction to take when designing a high-efficiency Si-based solar cell. This article reviews and compares the remarkable findings in graphene/Si heterojunction, focusing on their photovoltaic performance indicators along with their improvement features. First, we discuss the open circuit voltage of the heterojunction and highlight the important and problematic parts. Next, the efforts to maximize the short circuit current from graphene/Si solar cells are elaborated, followed closely by the main issues in fill factor. The emphasis on power conversion efficiency is given in the following section, which is alarming for this new photovoltaic device. The article concludes with the prospect, aim and direction for graphene/Si heterojunction solar cells, along with a brief discussion regarding the potential for utilizing low-cost reduced graphene oxide in Si solar cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fraunhofer ISE (2017) Photovoltaics report Fraunhofer ISE (2017) Photovoltaics report
2.
Zurück zum Zitat Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2:96–102 Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2:96–102
3.
Zurück zum Zitat Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K (2017) Silicon heterojunction solar cell with interdigitated backcontacts for a photoconversion efficiency over 26%. Nat Energy 2:17032 Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K (2017) Silicon heterojunction solar cell with interdigitated backcontacts for a photoconversion efficiency over 26%. Nat Energy 2:17032
4.
Zurück zum Zitat Green MA, Hishikawa Y, Dunlop ED, Levi DH, Ebinger JH, Baillie AWYH (2018) Solar cell efficiency tables (version 51). Prog Photovolt Res Appl 26:3–12 Green MA, Hishikawa Y, Dunlop ED, Levi DH, Ebinger JH, Baillie AWYH (2018) Solar cell efficiency tables (version 51). Prog Photovolt Res Appl 26:3–12
5.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
6.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191 Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191
7.
Zurück zum Zitat Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6:858–861 Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6:858–861
8.
Zurück zum Zitat Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581 Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581
9.
Zurück zum Zitat Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308 Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308
10.
Zurück zum Zitat Yin Z, Zhu J, He Q, Cao X, Tan C, Chen H, Yan Q, Zhang H (2013) Graphene-based materials for solar cell applications. Adv Energy Mater 4:1–19 Yin Z, Zhu J, He Q, Cao X, Tan C, Chen H, Yan Q, Zhang H (2013) Graphene-based materials for solar cell applications. Adv Energy Mater 4:1–19
11.
Zurück zum Zitat Zheng Q, Li Z, Yang J, Kim JK (2014) Graphene oxide-based transparent conductive films. Prog Mater Sci 64:200–247 Zheng Q, Li Z, Yang J, Kim JK (2014) Graphene oxide-based transparent conductive films. Prog Mater Sci 64:200–247
12.
Zurück zum Zitat Li X, Lv Z, Zhu H (2015) Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater 27:6549–6574 Li X, Lv Z, Zhu H (2015) Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater 27:6549–6574
13.
Zurück zum Zitat Di Bartolomeo A (2016) Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys Rep 606:1–58 Di Bartolomeo A (2016) Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys Rep 606:1–58
14.
Zurück zum Zitat Bhopal MF, Lee DW, Ur Rehman A, Lee SH (2017) Past and future of graphene/silicon heterojunction solar cells: a review. J Mater Chem C 5:10701–10714 Bhopal MF, Lee DW, Ur Rehman A, Lee SH (2017) Past and future of graphene/silicon heterojunction solar cells: a review. J Mater Chem C 5:10701–10714
15.
Zurück zum Zitat Cuevas A, Yan D (2013) Misconceptions and misnomers in solar cells. IEEE J Photovolt 3:916–922 Cuevas A, Yan D (2013) Misconceptions and misnomers in solar cells. IEEE J Photovolt 3:916–922
16.
Zurück zum Zitat Wurfel U, Cuevas A, Wurfel P (2015) Charge carrier separation in solar cells. IEEE J Photovolt 6:461–469 Wurfel U, Cuevas A, Wurfel P (2015) Charge carrier separation in solar cells. IEEE J Photovolt 6:461–469
17.
Zurück zum Zitat Lindroos J, Savin H (2016) Review of light-induced degradation in crystalline silicon solar cells. Sol Energy Mater Sol Cells 147:115–126 Lindroos J, Savin H (2016) Review of light-induced degradation in crystalline silicon solar cells. Sol Energy Mater Sol Cells 147:115–126
18.
Zurück zum Zitat Green MA, Zhao J, Wang A, Wenham SR (2001) Progress and outlook for high-efficiency crystalline silicon solar cells. Sol Energy Mater Sol Cells 65:9–16 Green MA, Zhao J, Wang A, Wenham SR (2001) Progress and outlook for high-efficiency crystalline silicon solar cells. Sol Energy Mater Sol Cells 65:9–16
19.
Zurück zum Zitat Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9:1552–1576 Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9:1552–1576
20.
Zurück zum Zitat Hodes G, Thompson L, DuBow J, Rajeshwar K (1983) Heterojunction silicon/indium tin oxide photoelectrodes: development of stable systems in aqueous electrolytes and their applicability to solar energy conversion and storage. J Am Chem Soc 105:324–330 Hodes G, Thompson L, DuBow J, Rajeshwar K (1983) Heterojunction silicon/indium tin oxide photoelectrodes: development of stable systems in aqueous electrolytes and their applicability to solar energy conversion and storage. J Am Chem Soc 105:324–330
21.
Zurück zum Zitat Green MA, Chong CM, Zhang F, Sproul A, Zolper J, Wenham SR (1988) 20% efficient laser grooved, buried contact silicon solar cells. In: IEEE Photovoltaic Specialist Conference, Las Vegas, Nevada, pp 411–414 Green MA, Chong CM, Zhang F, Sproul A, Zolper J, Wenham SR (1988) 20% efficient laser grooved, buried contact silicon solar cells. In: IEEE Photovoltaic Specialist Conference, Las Vegas, Nevada, pp 411–414
22.
Zurück zum Zitat Yuwen Z, Zhongming L, Chundong M, Shaoqi H, Zhiming L, Yuan Y, Zhiyun C (1997) Buried-contact high efficiency silicon solar cell with mechanical grooving. Sol Energy Mater Sol Cells 48:167–172 Yuwen Z, Zhongming L, Chundong M, Shaoqi H, Zhiming L, Yuan Y, Zhiyun C (1997) Buried-contact high efficiency silicon solar cell with mechanical grooving. Sol Energy Mater Sol Cells 48:167–172
23.
Zurück zum Zitat Zhao J, Wang A, Green MA (2001) High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates. Sol Energy Mater Sol Cells 65:429–435 Zhao J, Wang A, Green MA (2001) High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates. Sol Energy Mater Sol Cells 65:429–435
24.
Zurück zum Zitat Zhao J, Wang A, Altermatt PP, Green MA (2014) High efficiency PERT cells on n-type silicon substrates. In: IEEE Photovoltaic Specialist Conference, Denver, Colorado, pp 3637–3640 Zhao J, Wang A, Altermatt PP, Green MA (2014) High efficiency PERT cells on n-type silicon substrates. In: IEEE Photovoltaic Specialist Conference, Denver, Colorado, pp 3637–3640
25.
Zurück zum Zitat Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S (2014) Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovolt 4:1433–1435 Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S (2014) Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovolt 4:1433–1435
26.
Zurück zum Zitat Geissbuhler J, Werner J, De NS, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, De WS, Ballif C (2015) 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl Phys Lett 107:081601 Geissbuhler J, Werner J, De NS, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, De WS, Ballif C (2015) 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl Phys Lett 107:081601
27.
Zurück zum Zitat Battaglia C, De Nicolas SM, De Wolf S, Yin X, Zheng M, Ballif C, Javey A (2014) Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl Phys Lett 104:113902 Battaglia C, De Nicolas SM, De Wolf S, Yin X, Zheng M, Ballif C, Javey A (2014) Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl Phys Lett 104:113902
28.
Zurück zum Zitat Woehl R, Krause J, Granek F, Biro D (2011) 19.7% efficient all-screen-printed back-contact back-junction silicon solar cell with aluminum-alloyed emitter. IEEE Electron Device Lett 32:345–347 Woehl R, Krause J, Granek F, Biro D (2011) 19.7% efficient all-screen-printed back-contact back-junction silicon solar cell with aluminum-alloyed emitter. IEEE Electron Device Lett 32:345–347
29.
Zurück zum Zitat Tomasi A, Paviet-Salomon B, Lachenal D, De Nicolas SM, Descoeudres A, Geissbuhler J, De Wolf S, Ballif C (2014) Back-contacted silicon heterojunction solar cells with efficiency > 21%. IEEE J Photovolt 4:1046–1054 Tomasi A, Paviet-Salomon B, Lachenal D, De Nicolas SM, Descoeudres A, Geissbuhler J, De Wolf S, Ballif C (2014) Back-contacted silicon heterojunction solar cells with efficiency > 21%. IEEE J Photovolt 4:1046–1054
30.
Zurück zum Zitat Galbiati G, Mihailetchi VD, Roescu R, Halm A, Koduvelikulathu LJ, Kopecek R, Peter K, Libal J (2013) Large-area back-contact back-junction solar cell with efficiency exceeding 21%. IEEE J Photovolt 3:560–565 Galbiati G, Mihailetchi VD, Roescu R, Halm A, Koduvelikulathu LJ, Kopecek R, Peter K, Libal J (2013) Large-area back-contact back-junction solar cell with efficiency exceeding 21%. IEEE J Photovolt 3:560–565
31.
Zurück zum Zitat Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924 Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924
32.
Zurück zum Zitat Fuhrer MS, Lau CN, MacDonald AH (2010) Graphene: materially better carbon. MRS Bull 35:289–295 Fuhrer MS, Lau CN, MacDonald AH (2010) Graphene: materially better carbon. MRS Bull 35:289–295
33.
Zurück zum Zitat Munoz R, Gomez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Depos 19:297–322 Munoz R, Gomez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Depos 19:297–322
34.
Zurück zum Zitat Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355 Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355
35.
Zurück zum Zitat Song HS, Li SL, Miyazaki H, Sato S, Hayashi K, Yamada A, Yokoyama N, Tsukagoshi K (2012) Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci Rep 2:337 Song HS, Li SL, Miyazaki H, Sato S, Hayashi K, Yamada A, Yokoyama N, Tsukagoshi K (2012) Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci Rep 2:337
36.
Zurück zum Zitat Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539 Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539
37.
Zurück zum Zitat Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578 Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578
38.
Zurück zum Zitat Kim H, Horwitz JS, Kushto G, Pique A, Kafafi ZH, Gilmore CM, Chrisey DB (2000) Effect of film thickness on the properties of indium tin oxide thin films. J Appl Phys 88:6021 Kim H, Horwitz JS, Kushto G, Pique A, Kafafi ZH, Gilmore CM, Chrisey DB (2000) Effect of film thickness on the properties of indium tin oxide thin films. J Appl Phys 88:6021
39.
Zurück zum Zitat Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photon 6:749–758 Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photon 6:749–758
40.
Zurück zum Zitat Kwon KC, Choi KS, Kim SY (2012) Increased work function in few-layer graphene sheets via metal chloride doping. Adv Funct Mater 22:4724–4731 Kwon KC, Choi KS, Kim SY (2012) Increased work function in few-layer graphene sheets via metal chloride doping. Adv Funct Mater 22:4724–4731
41.
Zurück zum Zitat Hibino H, Kageshima H, Kotsugi M, Maeda F, Guo FZ, Watanabe Y (2009) Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys Rev B 79:125437 Hibino H, Kageshima H, Kotsugi M, Maeda F, Guo FZ, Watanabe Y (2009) Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys Rev B 79:125437
42.
Zurück zum Zitat Ihm K, Lim JT, Lee KJ, Kwon JW, Kang TH, Chung S, Bae S, Kim JH, Hong BH, Yeom GY (2010) Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell. Appl Phys Lett 97:032113 Ihm K, Lim JT, Lee KJ, Kwon JW, Kang TH, Chung S, Bae S, Kim JH, Hong BH, Yeom GY (2010) Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell. Appl Phys Lett 97:032113
43.
Zurück zum Zitat Wu Y, Zhang X, Jie J, Xie C, Zhang X, Sun B, Wang Y, Gao P (2013) Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells. J Phys Chem C 117:11968–11976 Wu Y, Zhang X, Jie J, Xie C, Zhang X, Sun B, Wang Y, Gao P (2013) Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells. J Phys Chem C 117:11968–11976
44.
Zurück zum Zitat Zhang X, Xie C, Jie J, Zhang X, Wua Y, Zhang W (2013) High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. J Mater Chem A 1:6593–6601 Zhang X, Xie C, Jie J, Zhang X, Wua Y, Zhang W (2013) High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. J Mater Chem A 1:6593–6601
45.
Zurück zum Zitat Xie C, Zhang X, Wu Y, Zhang X, Zhang X, Wang Y, Zhang W, Gao P, Hana Y, Jie J (2013) Surface passivation and band engineering: a way toward high efficiency graphene-planar Si solar cells. J Mater Chem A 1:8567–8574 Xie C, Zhang X, Wu Y, Zhang X, Zhang X, Wang Y, Zhang W, Gao P, Hana Y, Jie J (2013) Surface passivation and band engineering: a way toward high efficiency graphene-planar Si solar cells. J Mater Chem A 1:8567–8574
46.
Zurück zum Zitat De S, Coleman JN (2010) Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4:2713–2720 De S, Coleman JN (2010) Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4:2713–2720
47.
Zurück zum Zitat Park H, Chang S, Jean J, Cheng JJ, Araujo PT, Wang M, Bawendi MG, Dresselhaus MS, Bulovic V, Kong J, Gradecak S (2013) Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett 13:233–239 Park H, Chang S, Jean J, Cheng JJ, Araujo PT, Wang M, Bawendi MG, Dresselhaus MS, Bulovic V, Kong J, Gradecak S (2013) Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett 13:233–239
48.
Zurück zum Zitat Brida D, Tomadin A, Manzoni C, Kim YJ, Lombardo A, Milana S, Nair RR, Novoselov KS, Ferrari AC, Cerullo G, Polini M (2013) Ultrafast collinear scattering and carrier multiplication in graphene. Nat Commun 4:1987 Brida D, Tomadin A, Manzoni C, Kim YJ, Lombardo A, Milana S, Nair RR, Novoselov KS, Ferrari AC, Cerullo G, Polini M (2013) Ultrafast collinear scattering and carrier multiplication in graphene. Nat Commun 4:1987
49.
Zurück zum Zitat Tielrooij KJ, Song JCW, Jensen SA, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov LS, Koppens FHL (2013) Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat Phys 9:248–252 Tielrooij KJ, Song JCW, Jensen SA, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov LS, Koppens FHL (2013) Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat Phys 9:248–252
50.
Zurück zum Zitat Lee EJH, Balasubramanian K, Weitz RT, Burghard M, Kern K (2008) Contact and edge effects in graphene devices. Nat Nanotechnol 3:486–490 Lee EJH, Balasubramanian K, Weitz RT, Burghard M, Kern K (2008) Contact and edge effects in graphene devices. Nat Nanotechnol 3:486–490
51.
Zurück zum Zitat Park J, Ahn YH, Ruiz-Vargas C (2009) Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett 9:1742–1746 Park J, Ahn YH, Ruiz-Vargas C (2009) Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett 9:1742–1746
52.
Zurück zum Zitat Toyama N (1988) Variation in the effective Richardson constant of a metal-silicon contact due to metal film thickness. J Appl Phys 63:2720 Toyama N (1988) Variation in the effective Richardson constant of a metal-silicon contact due to metal film thickness. J Appl Phys 63:2720
53.
Zurück zum Zitat Roccaforte F, La Via F, Raineri V, Pierobon R, Zanoni E (2003) Richardson’s constant in inhomogeneous silicon carbide Schottky contacts. J Appl Phys 93:9137–9144 Roccaforte F, La Via F, Raineri V, Pierobon R, Zanoni E (2003) Richardson’s constant in inhomogeneous silicon carbide Schottky contacts. J Appl Phys 93:9137–9144
54.
Zurück zum Zitat Sarpatwari K, Mohney SE, Awadelkarim OO (2011) Effects of barrier height inhomogeneities on the determination of the Richardson constant. J Appl Phys 109:014510 Sarpatwari K, Mohney SE, Awadelkarim OO (2011) Effects of barrier height inhomogeneities on the determination of the Richardson constant. J Appl Phys 109:014510
55.
Zurück zum Zitat Arefinia Z, Asgari A (2015) An analytical model for optimizing the performance of graphene based silicon Schottky barrier solar cells. Mater Sci Semicond Process 35:181–188 Arefinia Z, Asgari A (2015) An analytical model for optimizing the performance of graphene based silicon Schottky barrier solar cells. Mater Sci Semicond Process 35:181–188
56.
Zurück zum Zitat Lee TC, Chen TP, Au HL, Fung S, Beling CD (1993) The effect of the temperature dependence of the ideality factor on metal-semiconductor solar devices. Semicond Sci Technol 8:1357–1360 Lee TC, Chen TP, Au HL, Fung S, Beling CD (1993) The effect of the temperature dependence of the ideality factor on metal-semiconductor solar devices. Semicond Sci Technol 8:1357–1360
57.
Zurück zum Zitat Tongay S, Schumann T, Hebard AF (2009) Graphite based Schottky diodes formed on Si, GaAs, and 4H–SiC substrates. Appl Phys Lett 95:222103 Tongay S, Schumann T, Hebard AF (2009) Graphite based Schottky diodes formed on Si, GaAs, and 4H–SiC substrates. Appl Phys Lett 95:222103
58.
Zurück zum Zitat Chen C, Aykol M, Chang CC, Levi AFJ, Cronin SB (2011) Graphene-silicon Schottky diodes. Nano Lett 11:1863–1867 Chen C, Aykol M, Chang CC, Levi AFJ, Cronin SB (2011) Graphene-silicon Schottky diodes. Nano Lett 11:1863–1867
59.
Zurück zum Zitat Sinha D, Lee JU (2014) Ideal graphene/silicon Schottky junction diodes. Nano Lett 14:4660–4664 Sinha D, Lee JU (2014) Ideal graphene/silicon Schottky junction diodes. Nano Lett 14:4660–4664
60.
Zurück zum Zitat Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22:2743–2748 Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22:2743–2748
61.
Zurück zum Zitat Bai X, Wang H, Wei J, Jia Y, Zhu H, Wang K, Wu D (2012) Carbon nanotube-silicon hybrid solar cells with hydrogen peroxide doping. Chem Phys Lett 533:70–73 Bai X, Wang H, Wei J, Jia Y, Zhu H, Wang K, Wu D (2012) Carbon nanotube-silicon hybrid solar cells with hydrogen peroxide doping. Chem Phys Lett 533:70–73
62.
Zurück zum Zitat Li X, Jung Y, Sakimoto K, Goh TH, Reed MA, Taylor AD (2013) Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci 6:879–887 Li X, Jung Y, Sakimoto K, Goh TH, Reed MA, Taylor AD (2013) Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci 6:879–887
63.
Zurück zum Zitat Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett 13:95–99 Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett 13:95–99
64.
Zurück zum Zitat Xu W, Deng B, Shi E, Wu S, Zou M, Yang L, Wei J, Peng H, Cao A (2015) Comparison of nanocarbon-silicon solar cells with nanotube-Si or graphene-Si contact. ACS Appl Mater Interfaces 7:17088–17094 Xu W, Deng B, Shi E, Wu S, Zou M, Yang L, Wei J, Peng H, Cao A (2015) Comparison of nanocarbon-silicon solar cells with nanotube-Si or graphene-Si contact. ACS Appl Mater Interfaces 7:17088–17094
65.
Zurück zum Zitat Suhail A, Pan G, Jenkins D, Islam K (2018) Improving efficiency of graphene/Si Schottky junction solar cell based on back contact structure and DUV treatment. Carbon 129:520–526 Suhail A, Pan G, Jenkins D, Islam K (2018) Improving efficiency of graphene/Si Schottky junction solar cell based on back contact structure and DUV treatment. Carbon 129:520–526
66.
Zurück zum Zitat Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015) Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Commun 6:6305 Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015) Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Commun 6:6305
67.
Zurück zum Zitat Shi E, Zhang L, Li Z, Li P, Shang Y, Jia Y, Wei J, Wang K, Zhu H, Wu D, Zhang S, Cao A (2012) TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep 2:884 Shi E, Zhang L, Li Z, Li P, Shang Y, Jia Y, Wei J, Wang K, Zhu H, Wu D, Zhang S, Cao A (2012) TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep 2:884
68.
Zurück zum Zitat Kim JM, Kim S, Shin DH, Seo SW, Lee HS, Kim JH, Jang CW, Kang SS, Choi SH, Kwak GY, Kim KJ, Lee H, Lee H (2018) Si-quantum-dot heterojunction solar cells with 16.2% efficiency achieved by employing doped-graphene transparent conductive electrodes. Nano Energy 43:124–129 Kim JM, Kim S, Shin DH, Seo SW, Lee HS, Kim JH, Jang CW, Kang SS, Choi SH, Kwak GY, Kim KJ, Lee H, Lee H (2018) Si-quantum-dot heterojunction solar cells with 16.2% efficiency achieved by employing doped-graphene transparent conductive electrodes. Nano Energy 43:124–129
69.
Zurück zum Zitat Ma J, Bai H, Zhao W, Yuan Y, Zhang K (2018) High efficiency graphene/MoS2/Si Schottky barrier solar cells using layer-controlled MoS2 films. Sol Energy 160:76–84 Ma J, Bai H, Zhao W, Yuan Y, Zhang K (2018) High efficiency graphene/MoS2/Si Schottky barrier solar cells using layer-controlled MoS2 films. Sol Energy 160:76–84
70.
Zurück zum Zitat Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H, Kong J (2015) Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett 15:2104–2110 Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H, Kong J (2015) Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett 15:2104–2110
71.
Zurück zum Zitat Shi E, Li H, Xu W, Wu S, Wei J, Fang Y, Cao A (2015) Improvement of graphene-Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy 17:216–223 Shi E, Li H, Xu W, Wu S, Wei J, Fang Y, Cao A (2015) Improvement of graphene-Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy 17:216–223
72.
Zurück zum Zitat Shi E, Li H, Yang L, Zhang L, Li Z, Li P, Shang Y, Wu S, Li X, Wei J, Wang K, Zhu H, Wu D, Fang Y, Cao A (2013) Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett 13:1776–1781 Shi E, Li H, Yang L, Zhang L, Li Z, Li P, Shang Y, Wu S, Li X, Wei J, Wang K, Zhu H, Wu D, Fang Y, Cao A (2013) Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett 13:1776–1781
73.
Zurück zum Zitat Xu D, He J, Yu X, Gao D, Ma L, Mu X, Zhong M, Xu Y, Ye J, Xu M, Yang D (2017) Illumination-induced hole doping for performance improvement of graphene/n-silicon solar cells with P3HT interlayer. Adv Electron Mater 3:1600516 Xu D, He J, Yu X, Gao D, Ma L, Mu X, Zhong M, Xu Y, Ye J, Xu M, Yang D (2017) Illumination-induced hole doping for performance improvement of graphene/n-silicon solar cells with P3HT interlayer. Adv Electron Mater 3:1600516
74.
Zurück zum Zitat Diao S, Zhang X, Shao Z, Ding K, Jie J, Zhang X (2017) 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 31:359–366 Diao S, Zhang X, Shao Z, Ding K, Jie J, Zhang X (2017) 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 31:359–366
75.
Zurück zum Zitat Jiao K, Wang X, Wang Y, Chen Y (2014) Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J Mater Chem C 2:7715–7721 Jiao K, Wang X, Wang Y, Chen Y (2014) Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J Mater Chem C 2:7715–7721
76.
Zurück zum Zitat Ho PH, Liou YT, Chuang CH, Lin SW, Tseng CY, Wang DY, Chen CC, Hung WY, Wen CY, Chen CW (2015) Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene heterojunction solar cells. Adv Mater 27:1724–1729 Ho PH, Liou YT, Chuang CH, Lin SW, Tseng CY, Wang DY, Chen CC, Hung WY, Wen CY, Chen CW (2015) Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene heterojunction solar cells. Adv Mater 27:1724–1729
77.
Zurück zum Zitat Tsuboi Y, Wang F, Kozawa D, Funahashi K, Mouri S, Miyauchi Y, Takenobu T, Matsuda K (2015) Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 7:14476–14482 Tsuboi Y, Wang F, Kozawa D, Funahashi K, Mouri S, Miyauchi Y, Takenobu T, Matsuda K (2015) Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 7:14476–14482
78.
Zurück zum Zitat Meng JH, Liu X, Zhang XW, Zhang Y, Wang HL, Yin ZG, Zhang YZ, Liu H, You JB, Yan H (2016) Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy 28:44–50 Meng JH, Liu X, Zhang XW, Zhang Y, Wang HL, Yin ZG, Zhang YZ, Liu H, You JB, Yan H (2016) Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy 28:44–50
79.
Zurück zum Zitat Yavuz S, Kuru C, Choi D, Kargar A, Jin S, Bandaru PR (2016) Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells. Nanoscale 8:6473–6478 Yavuz S, Kuru C, Choi D, Kargar A, Jin S, Bandaru PR (2016) Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells. Nanoscale 8:6473–6478
80.
Zurück zum Zitat Xie C, Zhang X, Ruan K, Shao Z, Dhaliwal SS, Wang L, Zhang Q, Zhang X, Jie J (2013) High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. J Mater Chem A 1:15348–15354 Xie C, Zhang X, Ruan K, Shao Z, Dhaliwal SS, Wang L, Zhang Q, Zhang X, Jie J (2013) High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. J Mater Chem A 1:15348–15354
81.
Zurück zum Zitat Liu X, Zhang XW, Meng JH, Yin ZG, Zhang LQ, Wang HL, Wu JL (2015) High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid. Appl Phys Lett 106:233901 Liu X, Zhang XW, Meng JH, Yin ZG, Zhang LQ, Wang HL, Wu JL (2015) High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid. Appl Phys Lett 106:233901
82.
Zurück zum Zitat Li X, Xie D, Park H, Zeng TH, Wang K, Wei J, Zhong M, Wu D, Kong J, Zhu H (2013) Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells. Adv Energy Mater 3:1029–1034 Li X, Xie D, Park H, Zeng TH, Wang K, Wei J, Zhong M, Wu D, Kong J, Zhu H (2013) Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells. Adv Energy Mater 3:1029–1034
83.
Zurück zum Zitat Li X, Xie D, Park H, Zhu M, Zeng TH, Wang K, Wei J, Wu D, Kong J, Zhu H (2013) Ion doping of graphene for high-efficiency heterojunction solar cells. Nanoscale 5:1945–1948 Li X, Xie D, Park H, Zhu M, Zeng TH, Wang K, Wei J, Wu D, Kong J, Zhu H (2013) Ion doping of graphene for high-efficiency heterojunction solar cells. Nanoscale 5:1945–1948
84.
Zurück zum Zitat Chen L, Yu H, Zhong J, He H, Zhang T (2015) Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell. Electrochim Acta 178:732–738 Chen L, Yu H, Zhong J, He H, Zhang T (2015) Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell. Electrochim Acta 178:732–738
85.
Zurück zum Zitat Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745–2750 Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745–2750
86.
Zurück zum Zitat Lancellotti L, Bobeico E, Capasso A, Lago E, Delli Veneri P, Leoni E, Buonocore F, Lisi N (2016) Combined effect of double antireflection coating and reversible molecular doping on performance of few-layer graphene/n-silicon Schottky barrier solar cells. Sol Energy 127:198–205 Lancellotti L, Bobeico E, Capasso A, Lago E, Delli Veneri P, Leoni E, Buonocore F, Lisi N (2016) Combined effect of double antireflection coating and reversible molecular doping on performance of few-layer graphene/n-silicon Schottky barrier solar cells. Sol Energy 127:198–205
87.
Zurück zum Zitat Ruan K, Ding K, Wang Y, Diao S, Shao Z, Zhang X, Jie J (2015) Flexible graphene/silicon heterojunction solar cells. J Mater Chem A 3:14370–14377 Ruan K, Ding K, Wang Y, Diao S, Shao Z, Zhang X, Jie J (2015) Flexible graphene/silicon heterojunction solar cells. J Mater Chem A 3:14370–14377
88.
Zurück zum Zitat Lin Y, Li X, Xie D, Feng T, Chen Y, Song R, Tian H, Ren T, Zhong M, Wang K, Zhu H (2013) Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ Sci 6:108–115 Lin Y, Li X, Xie D, Feng T, Chen Y, Song R, Tian H, Ren T, Zhong M, Wang K, Zhu H (2013) Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ Sci 6:108–115
89.
Zurück zum Zitat An X, Liu F, Kar S (2013) Optimizing performance parameters of graphene-silicon and thin transparent graphite-silicon heterojunction solar cells. Carbon 57:329–337 An X, Liu F, Kar S (2013) Optimizing performance parameters of graphene-silicon and thin transparent graphite-silicon heterojunction solar cells. Carbon 57:329–337
90.
Zurück zum Zitat Ahn J, Chou H, Banerjee SK (2017) Graphene-Al2O3-silicon heterojunction solar cells on flexible silicon substrates. J Appl Phys 121:163105 Ahn J, Chou H, Banerjee SK (2017) Graphene-Al2O3-silicon heterojunction solar cells on flexible silicon substrates. J Appl Phys 121:163105
91.
Zurück zum Zitat Liu X, Zhang XW, Yin ZG, Meng JH, Gao HL, Zhang LQ, Zhao YJ, Wang HL (2014) Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles. Appl Phys Lett 105:183901 Liu X, Zhang XW, Yin ZG, Meng JH, Gao HL, Zhang LQ, Zhao YJ, Wang HL (2014) Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles. Appl Phys Lett 105:183901
92.
Zurück zum Zitat Bhopal MF, Akbar K, Abdul Rehman M, Lee DW, Ur Rehman A, Seo Y, Chun SH, Lee SH (2017) High-K dielectric oxide as an interfacial layer with enhanced photo-generation for Gr/Si solar cells. Carbon 125:56–62 Bhopal MF, Akbar K, Abdul Rehman M, Lee DW, Ur Rehman A, Seo Y, Chun SH, Lee SH (2017) High-K dielectric oxide as an interfacial layer with enhanced photo-generation for Gr/Si solar cells. Carbon 125:56–62
93.
Zurück zum Zitat Cui T, Lv R, Huang Z, Chen S, Zhang Z, Gan X, Jia Y, Li X, Wang K, Wua D, Kang F (2013) Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. J Mater Chem A 1:5736–5740 Cui T, Lv R, Huang Z, Chen S, Zhang Z, Gan X, Jia Y, Li X, Wang K, Wua D, Kang F (2013) Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. J Mater Chem A 1:5736–5740
94.
Zurück zum Zitat Shin DH, Jang CW, Lee HS, Seo SW, Kim S, Choi SH (2018) Graphene/Si solar cells employing triethylenetetramine dopant and polymethylmethacrylate antireflection layer. Appl Surf Sci 433:181–187 Shin DH, Jang CW, Lee HS, Seo SW, Kim S, Choi SH (2018) Graphene/Si solar cells employing triethylenetetramine dopant and polymethylmethacrylate antireflection layer. Appl Surf Sci 433:181–187
95.
Zurück zum Zitat Liu J, Sun W, Wei D, Song X, Jiao T, He S, Zhang W, Du C (2015) Direct growth of graphene nanowalls on the crystalline silicon for solar cells. Appl Phys Lett 106:043904 Liu J, Sun W, Wei D, Song X, Jiao T, He S, Zhang W, Du C (2015) Direct growth of graphene nanowalls on the crystalline silicon for solar cells. Appl Phys Lett 106:043904
96.
Zurück zum Zitat Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wub D, Zhu H (2012) Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Nanoscale 4:2130–2133 Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wub D, Zhu H (2012) Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Nanoscale 4:2130–2133
97.
Zurück zum Zitat Feng T, Xie D, Lin Y, Zang Y, Ren T, Song R, Zhao H, Tian H, Li X, Zhu H, Liu L (2011) Graphene based Schottky junction solar cells on patterned silicon-pillar array substrate. Appl Phys Lett 99:233505 Feng T, Xie D, Lin Y, Zang Y, Ren T, Song R, Zhao H, Tian H, Li X, Zhu H, Liu L (2011) Graphene based Schottky junction solar cells on patterned silicon-pillar array substrate. Appl Phys Lett 99:233505
98.
Zurück zum Zitat Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H (2012) Boron doping of graphene for graphene-silicon p-n junction solar cells. Adv Energy Mater 2:425–429 Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H (2012) Boron doping of graphene for graphene-silicon p-n junction solar cells. Adv Energy Mater 2:425–429
99.
Zurück zum Zitat Fan G, Zhu H, Wang K, Wei J, Li X, Shu Q, Guo N, Wu D (2011) Graphene/silicon nanowire Schottky junction for enhanced light harvesting. ACS Appl Mater Interfaces 3:721–725 Fan G, Zhu H, Wang K, Wei J, Li X, Shu Q, Guo N, Wu D (2011) Graphene/silicon nanowire Schottky junction for enhanced light harvesting. ACS Appl Mater Interfaces 3:721–725
100.
Zurück zum Zitat Chen SM, Gao M, Fang XH, Ma ZQ (2015) Modifications and multiple roles of graphene film in SIS structural solar cells. Sol Energy 122:658–666 Chen SM, Gao M, Fang XH, Ma ZQ (2015) Modifications and multiple roles of graphene film in SIS structural solar cells. Sol Energy 122:658–666
101.
Zurück zum Zitat Xie C, Lv P, Nie B, Jie J, Zhang X, Wang Z, Jiang P, Hu Z, Luo L, Zhu Z, Wang L, Wu C (2011) Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl Phys Lett 99:133113 Xie C, Lv P, Nie B, Jie J, Zhang X, Wang Z, Jiang P, Hu Z, Luo L, Zhu Z, Wang L, Wu C (2011) Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl Phys Lett 99:133113
102.
Zurück zum Zitat Li YF, Yang W, Tu ZQ, Liu ZC, Yang F, Zhang LQ, Hatakeyama R (2014) Schottky junction solar cells based on graphene with different numbers of layers. Appl Phys Lett 104:043903 Li YF, Yang W, Tu ZQ, Liu ZC, Yang F, Zhang LQ, Hatakeyama R (2014) Schottky junction solar cells based on graphene with different numbers of layers. Appl Phys Lett 104:043903
103.
Zurück zum Zitat Crowther AC, Ghassaei A, Jung N, Brus LE (2012) Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 6:1865–1875 Crowther AC, Ghassaei A, Jung N, Brus LE (2012) Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 6:1865–1875
104.
Zurück zum Zitat Tongay S, Schumann T, Miao X, Appleton BR, Hebard AF (2011) Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping. Carbon 49:2033–2038 Tongay S, Schumann T, Miao X, Appleton BR, Hebard AF (2011) Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping. Carbon 49:2033–2038
105.
Zurück zum Zitat Tongay S, Berke K, Lemaitre M, Nasrollahi Z, Tanner DB, Hebard AF, Appleton BR (2011) Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22:425701 Tongay S, Berke K, Lemaitre M, Nasrollahi Z, Tanner DB, Hebard AF, Appleton BR (2011) Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22:425701
106.
Zurück zum Zitat Shi Y, Kim KK, Reina A, Hofmann M, Li L, Kong J (2010) Work function engineering of graphene electrode via chemical doping. ACS Nano 4:2689–2694 Shi Y, Kim KK, Reina A, Hofmann M, Li L, Kong J (2010) Work function engineering of graphene electrode via chemical doping. ACS Nano 4:2689–2694
107.
Zurück zum Zitat Kim KK, Reina A, Shi Y, Park H, Li LJ, Lee YH, Kong J (2010) Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21:285205 Kim KK, Reina A, Shi Y, Park H, Li LJ, Lee YH, Kong J (2010) Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21:285205
108.
Zurück zum Zitat Wang L, Sofer Z, Simek P, Tomandl I, Pumera M (2013) Boron-doped graphene: scalable and tunable p-type carrier concentration doping. J Phys Chem C 117:23251–23257 Wang L, Sofer Z, Simek P, Tomandl I, Pumera M (2013) Boron-doped graphene: scalable and tunable p-type carrier concentration doping. J Phys Chem C 117:23251–23257
109.
Zurück zum Zitat Fan X, Shen Z, Liu AQ, Kuo JL (2012) Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4:2157–2165 Fan X, Shen Z, Liu AQ, Kuo JL (2012) Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4:2157–2165
110.
Zurück zum Zitat Rani P, Jindal VK (2013) Designing band gap of graphene by B and N dopant atoms. RSC Adv 3:802–812 Rani P, Jindal VK (2013) Designing band gap of graphene by B and N dopant atoms. RSC Adv 3:802–812
111.
Zurück zum Zitat Escoffier W, Poumirol J, Yang R, Goiran M, Raquet B, Broto J (2010) Electric field doping of few-layer graphene. Phys B 405:1163–1167 Escoffier W, Poumirol J, Yang R, Goiran M, Raquet B, Broto J (2010) Electric field doping of few-layer graphene. Phys B 405:1163–1167
112.
Zurück zum Zitat Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Tuning the graphene work function by electric field effect. Nano Lett 9:3430–3434 Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Tuning the graphene work function by electric field effect. Nano Lett 9:3430–3434
113.
Zurück zum Zitat Yu X, Yang L, Lv Q, Xu M, Chen H, Yang D (2015) The enhanced efficiency of graphene-silicon solar cells by electric field doping. Nanoscale 7:7072–7077 Yu X, Yang L, Lv Q, Xu M, Chen H, Yang D (2015) The enhanced efficiency of graphene-silicon solar cells by electric field doping. Nanoscale 7:7072–7077
114.
Zurück zum Zitat Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692 Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692
115.
Zurück zum Zitat Lee D, Lee H, Ahn Y, Jeong Y, Lee DY, Lee Y (2013) Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5:7750–7755 Lee D, Lee H, Ahn Y, Jeong Y, Lee DY, Lee Y (2013) Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5:7750–7755
116.
Zurück zum Zitat Guo CF, Ren Z (2015) Flexible transparent conductors based on metal nanowire networks. Mater Today 18:143–154 Guo CF, Ren Z (2015) Flexible transparent conductors based on metal nanowire networks. Mater Today 18:143–154
117.
Zurück zum Zitat Sepulveda-Mora SB, Cloutier SG (2012) Figures of merit for high-performance transparent electrodes using dip-coated silver nanowire networks. J Nanomater 2012:286104 Sepulveda-Mora SB, Cloutier SG (2012) Figures of merit for high-performance transparent electrodes using dip-coated silver nanowire networks. J Nanomater 2012:286104
118.
Zurück zum Zitat Yang L, Yu X, Hu W, Wu X, Zhao Y, Yang D (2015) An 8.68% Efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts. ACS Appl Mater Interfaces 7:4135–4141 Yang L, Yu X, Hu W, Wu X, Zhao Y, Yang D (2015) An 8.68% Efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts. ACS Appl Mater Interfaces 7:4135–4141
119.
Zurück zum Zitat Kim JM, Seo SW, Shin DH, Lee HS, Kim JH, Jang CW, Kim S, Choi SH (2017) Ag-nanowires-doped graphene/Si Schottky-junction solar cells encapsulated with another graphene layer. Curr Appl Phys 17:1136–1141 Kim JM, Seo SW, Shin DH, Lee HS, Kim JH, Jang CW, Kim S, Choi SH (2017) Ag-nanowires-doped graphene/Si Schottky-junction solar cells encapsulated with another graphene layer. Curr Appl Phys 17:1136–1141
120.
Zurück zum Zitat Shivaraman S, Herman LH, Rana F, Park J, Spencer MG (2012) Schottky barrier inhomogeneities at the interface of few layer epitaxial graphene and silicon carbide. Appl Phys Lett 100:183112 Shivaraman S, Herman LH, Rana F, Park J, Spencer MG (2012) Schottky barrier inhomogeneities at the interface of few layer epitaxial graphene and silicon carbide. Appl Phys Lett 100:183112
121.
Zurück zum Zitat Park NW, Lee WY, Lee SK, Kim DJ, Kim GS, Hyung JH, Hong CH, Koh JH, Kim KS (2015) Electrical transport measurements and degradation of graphene/n-Si Schottky junction diodes. J Korean Phys Soc 66:22–26 Park NW, Lee WY, Lee SK, Kim DJ, Kim GS, Hyung JH, Hong CH, Koh JH, Kim KS (2015) Electrical transport measurements and degradation of graphene/n-Si Schottky junction diodes. J Korean Phys Soc 66:22–26
122.
Zurück zum Zitat Wang X, Li D, Zhang Q, Zou L, Wang F, Zhou J, Zhang Z (2015) Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon. Thin Solid Films 592:281–286 Wang X, Li D, Zhang Q, Zou L, Wang F, Zhou J, Zhang Z (2015) Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon. Thin Solid Films 592:281–286
123.
Zurück zum Zitat Lin YJ, Lin JH (2014) Annealing effect on Schottky barrier inhomogeneity of graphene/n-type Si Schottky diodes. Appl Surf Sci 311:224–229 Lin YJ, Lin JH (2014) Annealing effect on Schottky barrier inhomogeneity of graphene/n-type Si Schottky diodes. Appl Surf Sci 311:224–229
124.
Zurück zum Zitat Ponpon JP, Siffert P (1976) Open-circuit voltage of MIS silicon solar cells. J Appl Phys 47:3248–3251 Ponpon JP, Siffert P (1976) Open-circuit voltage of MIS silicon solar cells. J Appl Phys 47:3248–3251
125.
Zurück zum Zitat Baek SC, Seo YJ, Oh JG, Park MGA, Bong JH, Yoon SJ, Seo M, Park S, Park BG, Lee SH (2014) Alleviation of fermi-level pinning effect at metal/germanium interface by the insertion of graphene layers. Appl Phys Lett 105:073508 Baek SC, Seo YJ, Oh JG, Park MGA, Bong JH, Yoon SJ, Seo M, Park S, Park BG, Lee SH (2014) Alleviation of fermi-level pinning effect at metal/germanium interface by the insertion of graphene layers. Appl Phys Lett 105:073508
126.
Zurück zum Zitat Khurelbaatar Z, Kil YH, Yun HJ, Shim KH, Nam JT, Kim KS, Lee SK, Choi CJ (2014) Modification of Schottky barrier properties of Au/n-type Ge Schottky barrier diode using monolayer graphene interlayer. J Alloy Compd 614:323–329 Khurelbaatar Z, Kil YH, Yun HJ, Shim KH, Nam JT, Kim KS, Lee SK, Choi CJ (2014) Modification of Schottky barrier properties of Au/n-type Ge Schottky barrier diode using monolayer graphene interlayer. J Alloy Compd 614:323–329
127.
Zurück zum Zitat Brus VV, Gluba MA, Zhang X, Hinrichs K, Rappich J, Nickel NH (2014) Temperature and light dependent electrical properties of Graphene/n-Si–CH3-terminated solar cells. Sol Energy 107:74–81 Brus VV, Gluba MA, Zhang X, Hinrichs K, Rappich J, Nickel NH (2014) Temperature and light dependent electrical properties of Graphene/n-Si–CH3-terminated solar cells. Sol Energy 107:74–81
128.
Zurück zum Zitat Aberle AG (2000) Surface passivation of crystalline silicon solar cells: a review. Prog Photovolt: Res Appl 8:362–376 Aberle AG (2000) Surface passivation of crystalline silicon solar cells: a review. Prog Photovolt: Res Appl 8:362–376
129.
Zurück zum Zitat Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energy Mater Sol Cells 92:1305–1310 Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energy Mater Sol Cells 92:1305–1310
130.
Zurück zum Zitat Schmidt J, Kerr M, Cuevas A (2001) Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks. Semicond Sci Technol 16:164–170 Schmidt J, Kerr M, Cuevas A (2001) Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks. Semicond Sci Technol 16:164–170
131.
Zurück zum Zitat Li H, Hallam B, Wenham SR (2011) Comparative study of PECVD deposited a-Si:H/SiNx:H double passivating layer on CZ crystalline Si substrate. In: IEEE photovoltaic specifications conference, Seattle, Washington, pp 1481–1485 Li H, Hallam B, Wenham SR (2011) Comparative study of PECVD deposited a-Si:H/SiNx:H double passivating layer on CZ crystalline Si substrate. In: IEEE photovoltaic specifications conference, Seattle, Washington, pp 1481–1485
132.
Zurück zum Zitat Green MA (2002) Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog Photovolt: Res Appl 10:235–241 Green MA (2002) Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog Photovolt: Res Appl 10:235–241
133.
Zurück zum Zitat Basore PA (1990) Numerical modeling of textured silicon solar cells using PC-1D. IEEE Trans Electron Dev 37:337–343 Basore PA (1990) Numerical modeling of textured silicon solar cells using PC-1D. IEEE Trans Electron Dev 37:337–343
134.
Zurück zum Zitat Rand A, Basore PA (1991) Light-trapping silicon solar cells-experimental results and analysis. In: IEEE Photovoltaic Specifications Conference, Las Vegas, Nevada, pp. 192–197 Rand A, Basore PA (1991) Light-trapping silicon solar cells-experimental results and analysis. In: IEEE Photovoltaic Specifications Conference, Las Vegas, Nevada, pp. 192–197
135.
Zurück zum Zitat Saha H, Datta SK, Mukhopadhyay K, Banerjee S (1992) Influence of surface texturization on the light trapping and spectral response of silicon solar cells. IEEE Trans Electron Dev 39:1100–1107 Saha H, Datta SK, Mukhopadhyay K, Banerjee S (1992) Influence of surface texturization on the light trapping and spectral response of silicon solar cells. IEEE Trans Electron Dev 39:1100–1107
136.
Zurück zum Zitat Abdullah MF, Alghoul MA, Naser H, Asim N, Ahmadi S, Yatim B, Sopian K (2016) Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell. Renew Sustain Energy Rev 66:380–398 Abdullah MF, Alghoul MA, Naser H, Asim N, Ahmadi S, Yatim B, Sopian K (2016) Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell. Renew Sustain Energy Rev 66:380–398
137.
Zurück zum Zitat Zubel I, Kramkowska M (2004) Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with isopropanol solutions. Sens Actuators, A 115:549–556 Zubel I, Kramkowska M (2004) Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with isopropanol solutions. Sens Actuators, A 115:549–556
138.
Zurück zum Zitat Fukui K, Inomata Y, Shirasawa K (1997) Surface texturing using reactive ion etching for multicrystalline silicon solar cells. IEEE Photvolt Specif Conf, Anaheim, pp 47–50 Fukui K, Inomata Y, Shirasawa K (1997) Surface texturing using reactive ion etching for multicrystalline silicon solar cells. IEEE Photvolt Specif Conf, Anaheim, pp 47–50
139.
Zurück zum Zitat Vallejo B, Gonzalez-Manas M, Martinez-Lopez J, Caballero MA (2007) On the texturization of monocrystalline silicon with sodium carbonate solutions. Sol Energy 81:565–569 Vallejo B, Gonzalez-Manas M, Martinez-Lopez J, Caballero MA (2007) On the texturization of monocrystalline silicon with sodium carbonate solutions. Sol Energy 81:565–569
140.
Zurück zum Zitat Zubel I, Kramkowska M (2001) The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions. Sens Actuators, A 93:138–147 Zubel I, Kramkowska M (2001) The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions. Sens Actuators, A 93:138–147
141.
Zurück zum Zitat Vazsonyi E, De Clercq K, Einhaus R, Van Kerschaver E, Said K, Poortmans J, Szlufcik J, Nijs J (1999) Improved anisotropic etching process for industrial texturing of silicon solar cells. Sol Energy Mater Sol Cells 57:179–188 Vazsonyi E, De Clercq K, Einhaus R, Van Kerschaver E, Said K, Poortmans J, Szlufcik J, Nijs J (1999) Improved anisotropic etching process for industrial texturing of silicon solar cells. Sol Energy Mater Sol Cells 57:179–188
142.
Zurück zum Zitat Prasad B, Bhattacharya S, Saxena AK, Reddy SR, Bhogra RK (2010) Performance enhancement of mc-Si solar cells due to synergetic effect of plasma texturization and SiNx: H AR coating. Sol Energy Mater Sol Cells 94:1329–1332 Prasad B, Bhattacharya S, Saxena AK, Reddy SR, Bhogra RK (2010) Performance enhancement of mc-Si solar cells due to synergetic effect of plasma texturization and SiNx: H AR coating. Sol Energy Mater Sol Cells 94:1329–1332
143.
Zurück zum Zitat Zielke D, Sylla D, Neubert T, Brendel R, Schmidt J (2012) Direct laser texturing for high-efficiency silicon solar cells. IEEE J Photovolt 3:656–661 Zielke D, Sylla D, Neubert T, Brendel R, Schmidt J (2012) Direct laser texturing for high-efficiency silicon solar cells. IEEE J Photovolt 3:656–661
144.
Zurück zum Zitat Repo P, Benick J, Vahanissi V, Schon J, Von Gastrow G, Steinhauser B, Schubert MC, Hermle M, Savin H (2013) N-type black silicon solar cells. Energy Proc 38:866–871 Repo P, Benick J, Vahanissi V, Schon J, Von Gastrow G, Steinhauser B, Schubert MC, Hermle M, Savin H (2013) N-type black silicon solar cells. Energy Proc 38:866–871
145.
Zurück zum Zitat Chen CH, Juan PC, Liao MH, Tsai JL, Hwang HL (2011) The effect of surface treatment on omni-directional efficiency of the silicon solar cells with micro-spherical texture/ITO stacks. Sol Energy Mater Sol Cells 95:2545–2548 Chen CH, Juan PC, Liao MH, Tsai JL, Hwang HL (2011) The effect of surface treatment on omni-directional efficiency of the silicon solar cells with micro-spherical texture/ITO stacks. Sol Energy Mater Sol Cells 95:2545–2548
146.
Zurück zum Zitat Kohata H, Saito Y (2010) Maskless texturization of phosphorus-diffused layers for crystalline Si solar cells by plasmaless dry etching with chlorine trifluoride gas. Sol Energy Mater Sol Cells 94:2124–2128 Kohata H, Saito Y (2010) Maskless texturization of phosphorus-diffused layers for crystalline Si solar cells by plasmaless dry etching with chlorine trifluoride gas. Sol Energy Mater Sol Cells 94:2124–2128
147.
Zurück zum Zitat Basu PK, Sarangi D, Boreland MB (2013) Single-component damage-etch process for improved texturization of monocrystalline silicon wafer solar cells. IEEE J Photovolt 3:1222–1228 Basu PK, Sarangi D, Boreland MB (2013) Single-component damage-etch process for improved texturization of monocrystalline silicon wafer solar cells. IEEE J Photovolt 3:1222–1228
148.
Zurück zum Zitat Edwards M, Bowden S, Das U, Burrows M (2008) Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells. Sol Energy Mater Sol Cells 92:1373–1377 Edwards M, Bowden S, Das U, Burrows M (2008) Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells. Sol Energy Mater Sol Cells 92:1373–1377
149.
Zurück zum Zitat Marrero N, Guerrero-Lemus R, Gonzalez-Diaz B, Borchert D (2009) Effect of porous silicon stain etched on large area alkaline textured crystalline silicon solar cells. Thin Solid Films 517:2648–2650 Marrero N, Guerrero-Lemus R, Gonzalez-Diaz B, Borchert D (2009) Effect of porous silicon stain etched on large area alkaline textured crystalline silicon solar cells. Thin Solid Films 517:2648–2650
150.
Zurück zum Zitat Dou B, Jia R, Li H, Chen C, Ding W, Meng Y, Liu X, Ye T (2013) Rear surface protection and front surface bi-layer passivation for silicon nanostructure-textured solar cells. J Phys D Appl Phys 46:025101 Dou B, Jia R, Li H, Chen C, Ding W, Meng Y, Liu X, Ye T (2013) Rear surface protection and front surface bi-layer passivation for silicon nanostructure-textured solar cells. J Phys D Appl Phys 46:025101
151.
Zurück zum Zitat Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087 Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087
152.
Zurück zum Zitat He L, Jiang C, Wang H, Lai D, Tan YH, Tan CS, Rusli (2012) Effects of nanowire texturing on the performance of Si/organic hybrid solar cells fabricated with a 2.2 m thin film Si absorber. Appl Phys Lett 100:103104 He L, Jiang C, Wang H, Lai D, Tan YH, Tan CS, Rusli (2012) Effects of nanowire texturing on the performance of Si/organic hybrid solar cells fabricated with a 2.2 m thin film Si absorber. Appl Phys Lett 100:103104
153.
Zurück zum Zitat Xie C, Jie J, Nie B, Yan T, Li Q, Lv P, Li F, Wang M, Wu C, Wang L, Luo L (2012) Schottky solar cells based on graphene nanoribbon/multiple silicon nanowires junctions. Appl Phys Lett 100:193103 Xie C, Jie J, Nie B, Yan T, Li Q, Lv P, Li F, Wang M, Wu C, Wang L, Luo L (2012) Schottky solar cells based on graphene nanoribbon/multiple silicon nanowires junctions. Appl Phys Lett 100:193103
154.
Zurück zum Zitat Muskens OL, Rivas JG, Algra RE, Bakkers EPAM, Lagendijk A (2008) Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett 8:2638–2642 Muskens OL, Rivas JG, Algra RE, Bakkers EPAM, Lagendijk A (2008) Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett 8:2638–2642
155.
Zurück zum Zitat Llopis F, Tobias I (2005) Influence of texture feature size on the optical performance of silicon solar cells. Prog Photovolt: Res Appl 13:27–36 Llopis F, Tobias I (2005) Influence of texture feature size on the optical performance of silicon solar cells. Prog Photovolt: Res Appl 13:27–36
156.
Zurück zum Zitat Sai H, Kanamori Y, Arafune K, Ohshita Y, Yamaguchi M (2007) Light trapping effect of submicron surface textures in crystalline Si solar cells. Prog Photovolt: Res Appl 15:415–423 Sai H, Kanamori Y, Arafune K, Ohshita Y, Yamaguchi M (2007) Light trapping effect of submicron surface textures in crystalline Si solar cells. Prog Photovolt: Res Appl 15:415–423
157.
Zurück zum Zitat Kumar R, Sharma AK, Bhatnagar M, Mehta BR, Rath S (2013) Antireflection properties of graphene layers on planar and textured silicon surfaces. Nanotechnology 24:165402 Kumar R, Sharma AK, Bhatnagar M, Mehta BR, Rath S (2013) Antireflection properties of graphene layers on planar and textured silicon surfaces. Nanotechnology 24:165402
158.
Zurück zum Zitat Li R, Di J, Yong Z, Sun B, Li Q (2014) Polymethylmethacrylate coating on aligned carbon nanotube-silicon solar cells for performance improvement. J Mater Chem A 2:4140–4143 Li R, Di J, Yong Z, Sun B, Li Q (2014) Polymethylmethacrylate coating on aligned carbon nanotube-silicon solar cells for performance improvement. J Mater Chem A 2:4140–4143
159.
Zurück zum Zitat Lancellotti L, Bobeico E, Castaldo A, Veneri PD, Lago E, Lisi N (2018) Effects of different graphene dopants on double antireflection coatings/graphene/n-silicon heterojunction solar cells. Thin Solid Films 646:21–27 Lancellotti L, Bobeico E, Castaldo A, Veneri PD, Lago E, Lisi N (2018) Effects of different graphene dopants on double antireflection coatings/graphene/n-silicon heterojunction solar cells. Thin Solid Films 646:21–27
160.
Zurück zum Zitat Luo LB, Zeng LH, Xie C, Yu YQ, Liang FX, Wu CY, Wang L, Hu JG (2014) Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci Rep 4:3914 Luo LB, Zeng LH, Xie C, Yu YQ, Liang FX, Wu CY, Wang L, Hu JG (2014) Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci Rep 4:3914
161.
Zurück zum Zitat Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800 Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800
162.
Zurück zum Zitat Pudasaini PR, Ayon AA (2013) Modeling the front side plasmonics effect in nanotextured silicon surface for thin film solar cells application. Microsyst Technol 19:871–877 Pudasaini PR, Ayon AA (2013) Modeling the front side plasmonics effect in nanotextured silicon surface for thin film solar cells application. Microsyst Technol 19:871–877
163.
Zurück zum Zitat Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205 Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205
164.
Zurück zum Zitat Lin C, Povinelli ML (2010) The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays. Appl Phys Lett 97:071110 Lin C, Povinelli ML (2010) The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays. Appl Phys Lett 97:071110
165.
Zurück zum Zitat Sardana SK, Chava VSN, Thouti E, Chander N, Kumar S, Reddy SR, Komarala VK (2014) Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell. Appl Phys Lett 104:073903 Sardana SK, Chava VSN, Thouti E, Chander N, Kumar S, Reddy SR, Komarala VK (2014) Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell. Appl Phys Lett 104:073903
166.
Zurück zum Zitat Chen X, Jia B, Zhang Y, Gu M (2013) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light Sci Appl 2:e92 Chen X, Jia B, Zhang Y, Gu M (2013) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light Sci Appl 2:e92
167.
Zurück zum Zitat Cartier E, Stathis JH, Buchanan DA (1993) Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen. Appl Phys Lett 63:1510–1512 Cartier E, Stathis JH, Buchanan DA (1993) Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen. Appl Phys Lett 63:1510–1512
168.
Zurück zum Zitat Jeong DY, Kim CS, Song JY, Lee JC, Cho JS, Park SH, Wang JS, Yoon KH, Song J (2009) Effect of texture morphology on the surface passivation and a-Si/c-Si heterojunction solar cells. In: IEEE photovoltaic specifications conferences, Philadelphia, Pennsylvania, pp 642–645 Jeong DY, Kim CS, Song JY, Lee JC, Cho JS, Park SH, Wang JS, Yoon KH, Song J (2009) Effect of texture morphology on the surface passivation and a-Si/c-Si heterojunction solar cells. In: IEEE photovoltaic specifications conferences, Philadelphia, Pennsylvania, pp 642–645
169.
Zurück zum Zitat Holman ZC, Filipic M, Lipovsek B, De Wolf S, Smole F, Topic M, Ballif C (2014) Parasitic absorption in the rear reflector of a silicon solar cell: simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors. Sol Energy Mater Sol Cells 120:426–430 Holman ZC, Filipic M, Lipovsek B, De Wolf S, Smole F, Topic M, Ballif C (2014) Parasitic absorption in the rear reflector of a silicon solar cell: simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors. Sol Energy Mater Sol Cells 120:426–430
170.
Zurück zum Zitat Echtermeyer TJ, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV, Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS (2011) Strong plasmonic enhancement of photovoltage in graphene. Nat Commun 2:458 Echtermeyer TJ, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV, Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS (2011) Strong plasmonic enhancement of photovoltage in graphene. Nat Commun 2:458
171.
Zurück zum Zitat Oh J, Yuan HC, Branz HM (2012) An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7:743–748 Oh J, Yuan HC, Branz HM (2012) An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7:743–748
172.
Zurück zum Zitat Bozzola A, Kowalczewski P, Andreani LC (2014) Towards high efficiency thin-film crystalline silicon solar cells: the roles of light trapping and non radiative recombinations. J Appl Phys 115:094501 Bozzola A, Kowalczewski P, Andreani LC (2014) Towards high efficiency thin-film crystalline silicon solar cells: the roles of light trapping and non radiative recombinations. J Appl Phys 115:094501
173.
Zurück zum Zitat Dingemans G, Kessels WMM (2012) Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J Vac Sci Technol A 30:040802 Dingemans G, Kessels WMM (2012) Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J Vac Sci Technol A 30:040802
174.
Zurück zum Zitat Alderman N, Danos L, Grossel MC, Markvart T (2012) Large surface photovoltages observed at methyl-terminated silicon surfaces synthesised through a two-step chlorination-alkylation method. RSC Adv 2:7669–7672 Alderman N, Danos L, Grossel MC, Markvart T (2012) Large surface photovoltages observed at methyl-terminated silicon surfaces synthesised through a two-step chlorination-alkylation method. RSC Adv 2:7669–7672
175.
Zurück zum Zitat Sopori B, Rupnowski P, Appel J, Mehta V, Li C, Johnston S (2008) Wafer preparation and iodine-ethanol passivation procedure for reproducible minority-carrier lifetime measurement. In: IEEE photovoltaic specifications conference, San Diego, California, pp 1–4 Sopori B, Rupnowski P, Appel J, Mehta V, Li C, Johnston S (2008) Wafer preparation and iodine-ethanol passivation procedure for reproducible minority-carrier lifetime measurement. In: IEEE photovoltaic specifications conference, San Diego, California, pp 1–4
176.
Zurück zum Zitat Chhabra B, Bowden S, Opila RL, Honsberg CB (2010) High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation. Appl Phys Lett 96:063502 Chhabra B, Bowden S, Opila RL, Honsberg CB (2010) High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation. Appl Phys Lett 96:063502
177.
Zurück zum Zitat Chen J, Zhao L, Diao H, Yan B, Zhou S, Tang Y, Wang W (2013) Surface passivation of silicon wafers by iodine-ethanol (I-E) for minority carrier lifetime measurements. Adv Mater Res 652–654:901–905 Chen J, Zhao L, Diao H, Yan B, Zhou S, Tang Y, Wang W (2013) Surface passivation of silicon wafers by iodine-ethanol (I-E) for minority carrier lifetime measurements. Adv Mater Res 652–654:901–905
178.
Zurück zum Zitat Haick H, Hurley PT, Hochbaum AI, Yang P, Lewis NS (2006) Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. J Am Chem Soc 128:8990–8991 Haick H, Hurley PT, Hochbaum AI, Yang P, Lewis NS (2006) Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. J Am Chem Soc 128:8990–8991
179.
Zurück zum Zitat Sieval AB, Huisman CL, Schonecker A, Schuurmans FM, Van Der Heide ASH, Goossens A, Sinke WC, Zuilhof H, Sudholter EJR (2003) Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations. J Phys Chem B 107:6846–6852 Sieval AB, Huisman CL, Schonecker A, Schuurmans FM, Van Der Heide ASH, Goossens A, Sinke WC, Zuilhof H, Sudholter EJR (2003) Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations. J Phys Chem B 107:6846–6852
180.
Zurück zum Zitat Brus VV, Gluba MA, Zhang X, Hinrichs K, Rappich J, Nickel NH (2014) Stability of graphene-silicon heterostructure solar cells. Phys Stat Solidi A 211:843–847 Brus VV, Gluba MA, Zhang X, Hinrichs K, Rappich J, Nickel NH (2014) Stability of graphene-silicon heterostructure solar cells. Phys Stat Solidi A 211:843–847
181.
Zurück zum Zitat Bashouti MY, Paska Y, Puniredd SR, Stelzner T, Christiansen S, Haick H (2009) Silicon nanowires terminated with methyl functionalities exhibit stronger Si–C bonds than equivalent 2D surfaces. Phys Chem Chem Phys 11:3845–3848 Bashouti MY, Paska Y, Puniredd SR, Stelzner T, Christiansen S, Haick H (2009) Silicon nanowires terminated with methyl functionalities exhibit stronger Si–C bonds than equivalent 2D surfaces. Phys Chem Chem Phys 11:3845–3848
182.
Zurück zum Zitat Hunger R, Chr P, Scheer R (2002) Dipole formation and band alignment at the Si(111)/CuInS2 heterojunction. J Appl Phys 91:6560–6570 Hunger R, Chr P, Scheer R (2002) Dipole formation and band alignment at the Si(111)/CuInS2 heterojunction. J Appl Phys 91:6560–6570
183.
Zurück zum Zitat Hunger R, Fritsche R, Jaeckel B, Jaegermann W (2005) Chemical and electronic characterization of methyl-terminated Si(111) surfaces by high-resolution synchrotron photoelectron spectroscopy. Phys Rev B 72:045317 Hunger R, Fritsche R, Jaeckel B, Jaegermann W (2005) Chemical and electronic characterization of methyl-terminated Si(111) surfaces by high-resolution synchrotron photoelectron spectroscopy. Phys Rev B 72:045317
184.
Zurück zum Zitat Maldonado S, Plass KE, Knapp D, Lewis NS (2007) Electrical properties of junctions between Hg and Si (111) surfaces functionalized with short-chain alkyls. J Phys Chem C 111:17690–17699 Maldonado S, Plass KE, Knapp D, Lewis NS (2007) Electrical properties of junctions between Hg and Si (111) surfaces functionalized with short-chain alkyls. J Phys Chem C 111:17690–17699
185.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339 Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339
186.
Zurück zum Zitat Hsu WT, Tsai ZS, Chen LC, Chen GY, Lin CC, Chen MH, Song JM, Lin CH (2014) Passivation ability of graphene oxide demonstrated by two-different-metal solar cells. Nanoscale Res Lett 9:696 Hsu WT, Tsai ZS, Chen LC, Chen GY, Lin CC, Chen MH, Song JM, Lin CH (2014) Passivation ability of graphene oxide demonstrated by two-different-metal solar cells. Nanoscale Res Lett 9:696
187.
Zurück zum Zitat Lin CH, Yeh WT, Chen MH (2014) Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide. IEEE J Sel Top Quantum Electron 20:3800105 Lin CH, Yeh WT, Chen MH (2014) Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide. IEEE J Sel Top Quantum Electron 20:3800105
188.
Zurück zum Zitat Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174 Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174
189.
Zurück zum Zitat Yang L, Yu X, Xu M, Chen H, Yang D (2014) Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer. J Mater Chem A 2:16877–16883 Yang L, Yu X, Xu M, Chen H, Yang D (2014) Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer. J Mater Chem A 2:16877–16883
190.
Zurück zum Zitat Jeon YJ, Yun JM, Kim DY, Na SI, Kim SS (2014) Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process. Appl Surf Sci 296:140–146 Jeon YJ, Yun JM, Kim DY, Na SI, Kim SS (2014) Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process. Appl Surf Sci 296:140–146
191.
Zurück zum Zitat Yeh TF, Chan FF, Hsieh CT, Teng H (2011) Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide. J Phys Chem C 115:22587–22597 Yeh TF, Chan FF, Hsieh CT, Teng H (2011) Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide. J Phys Chem C 115:22587–22597
192.
Zurück zum Zitat Yang D, Zhou L, Chen L, Zhao B, Zhang J, Li C (2012) Chemically modified graphene oxides as a hole transport layer in organic solar cells. Chem Commun 48:8078–8080 Yang D, Zhou L, Chen L, Zhao B, Zhang J, Li C (2012) Chemically modified graphene oxides as a hole transport layer in organic solar cells. Chem Commun 48:8078–8080
193.
Zurück zum Zitat Uma K, Subramani T, Syu HJ, Lin TC, Lin CF (2015) Fabrication of silicon nanowire/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate)-graphene oxide hybrid solar cells. J Appl Phys 117:105102 Uma K, Subramani T, Syu HJ, Lin TC, Lin CF (2015) Fabrication of silicon nanowire/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate)-graphene oxide hybrid solar cells. J Appl Phys 117:105102
194.
Zurück zum Zitat Girotto C, Voroshazi E, Cheyns D, Heremans P, Rand BP (2011) Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS Appl Mater Inter 3:3244–3247 Girotto C, Voroshazi E, Cheyns D, Heremans P, Rand BP (2011) Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS Appl Mater Inter 3:3244–3247
195.
Zurück zum Zitat Chambon S, Derue L, Lahaye M, Pavageau B, Hirsch L, Wantz G (2012) MoO3 thickness, thermal annealing and solvent annealing effects on inverted and direct polymer photovoltaic solar cells. Materials 5:2521–2536 Chambon S, Derue L, Lahaye M, Pavageau B, Hirsch L, Wantz G (2012) MoO3 thickness, thermal annealing and solvent annealing effects on inverted and direct polymer photovoltaic solar cells. Materials 5:2521–2536
196.
Zurück zum Zitat Wang G, Jiu T, Li P, Li J, Sun C, Lu F, Fang J (2014) Preparation and characterization of MoO3 hole-injection layer for organic solar cell fabrication and optimization. Sol Energy Mater Sol Cells 120:603–609 Wang G, Jiu T, Li P, Li J, Sun C, Lu F, Fang J (2014) Preparation and characterization of MoO3 hole-injection layer for organic solar cell fabrication and optimization. Sol Energy Mater Sol Cells 120:603–609
197.
Zurück zum Zitat Bullock J, Cuevas A, Allen T, Battaglia C (2014) Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl Phys Lett 105:232109 Bullock J, Cuevas A, Allen T, Battaglia C (2014) Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl Phys Lett 105:232109
198.
Zurück zum Zitat Battaglia C, Yin X, Zheng M, Sharp ID, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace RM, Javey A (2014) Hole selective MoOx contact for silicon solar cells. Nano Lett 14:967–971 Battaglia C, Yin X, Zheng M, Sharp ID, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace RM, Javey A (2014) Hole selective MoOx contact for silicon solar cells. Nano Lett 14:967–971
199.
Zurück zum Zitat Jiao K, Duan C, Wu X, Chen J, Wang Y, Chen Y (2015) The role of MoS2 as an interfacial layer in graphene/silicon solar cells. Phys Chem Chem Phys 17:8182–8186 Jiao K, Duan C, Wu X, Chen J, Wang Y, Chen Y (2015) The role of MoS2 as an interfacial layer in graphene/silicon solar cells. Phys Chem Chem Phys 17:8182–8186
200.
Zurück zum Zitat Fontana M, Deppe T, Boyd AK, Rinzan M, Liu AY, Paranjape M, Barbara P (2013) Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci Rep 3:1634 Fontana M, Deppe T, Boyd AK, Rinzan M, Liu AY, Paranjape M, Barbara P (2013) Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci Rep 3:1634
201.
Zurück zum Zitat Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13:3664–3670 Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13:3664–3670
202.
Zurück zum Zitat Yim C, O’Brien M, McEvoy N, Riazimehr S, Schafer-Eberwein H, Bablich A, Pawar R, Iannaccone G, Downing C, Fiori G, Lemme MC, Duesberg GS (2014) Heterojunction hybrid devices from vapor phase grown MoS2. Sci Rep 4:5458 Yim C, O’Brien M, McEvoy N, Riazimehr S, Schafer-Eberwein H, Bablich A, Pawar R, Iannaccone G, Downing C, Fiori G, Lemme MC, Duesberg GS (2014) Heterojunction hybrid devices from vapor phase grown MoS2. Sci Rep 4:5458
203.
Zurück zum Zitat Reese O, Morfa AJ, White MS, Kopidakis N, Shaheen SE, Rumbles G, Ginley DS (2008) Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices. Sol Energy Mater Sol Cells 92:746–752 Reese O, Morfa AJ, White MS, Kopidakis N, Shaheen SE, Rumbles G, Ginley DS (2008) Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices. Sol Energy Mater Sol Cells 92:746–752
204.
Zurück zum Zitat Manceau M, Rivaton A, Gardette JL, Guillerez S, Lemaitre N (2011) Light-induced degradation of the P3HT-based solar cells active layer. Sol Energy Mater Sol Cells 95:1315–1325 Manceau M, Rivaton A, Gardette JL, Guillerez S, Lemaitre N (2011) Light-induced degradation of the P3HT-based solar cells active layer. Sol Energy Mater Sol Cells 95:1315–1325
205.
Zurück zum Zitat Singh E, Nalwa HS (2015) Stability of graphene-based heterojunction solar cells. RSC Adv 5:73575–73600 Singh E, Nalwa HS (2015) Stability of graphene-based heterojunction solar cells. RSC Adv 5:73575–73600
206.
Zurück zum Zitat Jia Y, Li P, Gui X, Wei J, Wang K, Zhu H, Wu D, Zhang L, Cao A, Xu Y (2011) Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency. Appl Phys Lett 98:133115 Jia Y, Li P, Gui X, Wei J, Wang K, Zhu H, Wu D, Zhang L, Cao A, Xu Y (2011) Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency. Appl Phys Lett 98:133115
207.
Zurück zum Zitat Li X, Zang X, Li X, Zhu M, Chen Q, Wang K, Zhong M, Wei J, Wu D, Zhu H (2014) Hybrid heterojunction and solid-state photoelectrochemical solar cells. Adv Energy Mater 4:1400224 Li X, Zang X, Li X, Zhu M, Chen Q, Wang K, Zhong M, Wei J, Wu D, Zhu H (2014) Hybrid heterojunction and solid-state photoelectrochemical solar cells. Adv Energy Mater 4:1400224
208.
Zurück zum Zitat Jia Y, Cao A, Bai X, Li Z, Zhang L, Guo N, Wei J, Wang K, Zhu H, Wu D, Ajayan PM (2011) Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett 11:1901–1905 Jia Y, Cao A, Bai X, Li Z, Zhang L, Guo N, Wei J, Wang K, Zhu H, Wu D, Ajayan PM (2011) Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett 11:1901–1905
209.
Zurück zum Zitat Zhang W, Lin CT, Liu KK, Tite T, Su CY, Chang CH, Lee YH, Chu CW, Wei KH, Kuo JL, Li LJ (2011) Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano 5:7517–7524 Zhang W, Lin CT, Liu KK, Tite T, Su CY, Chang CH, Lee YH, Chu CW, Wei KH, Kuo JL, Li LJ (2011) Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano 5:7517–7524
210.
Zurück zum Zitat Ryu S, Liu L, Berciaud S, Yu YJ, Liu H, Kim P, Flynn GW, Brus LE (2010) Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett 10:4944–4951 Ryu S, Liu L, Berciaud S, Yu YJ, Liu H, Kim P, Flynn GW, Brus LE (2010) Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett 10:4944–4951
211.
Zurück zum Zitat Suk JW, Lee WH, Lee J, Chou H, Piner RD, Hao Y, Akinwande D, Ruoff RS (2013) Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett 13:1462–1467 Suk JW, Lee WH, Lee J, Chou H, Piner RD, Hao Y, Akinwande D, Ruoff RS (2013) Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett 13:1462–1467
212.
Zurück zum Zitat Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462 Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462
213.
Zurück zum Zitat Tongay S, Lemaitre M, Schumann T, Berke K, Appleton BR, Gila B, Hebard AF (2011) Graphene/GaN Schottky diodes: stability at elevated temperatures. Appl Phys Lett 99:102102 Tongay S, Lemaitre M, Schumann T, Berke K, Appleton BR, Gila B, Hebard AF (2011) Graphene/GaN Schottky diodes: stability at elevated temperatures. Appl Phys Lett 99:102102
214.
Zurück zum Zitat Kim DJ, Kim GS, Park NW, Lee WY, Sim Y, Kim KS, Seong MJ, Koh JH, Hong CH, Lee SK (2014) Effect of annealing of graphene layer on electrical transport and degradation of Au/graphene/n-type silicon Schottky diodes. J Alloy Compd 612:265–272 Kim DJ, Kim GS, Park NW, Lee WY, Sim Y, Kim KS, Seong MJ, Koh JH, Hong CH, Lee SK (2014) Effect of annealing of graphene layer on electrical transport and degradation of Au/graphene/n-type silicon Schottky diodes. J Alloy Compd 612:265–272
215.
Zurück zum Zitat Hellstrom SL, Vosgueritchian M, Stoltenberg RM, Irfan I, Hammock M, Wang YB, Jia C, Guo X, Gao Y, Bao Z (2012) Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett 12:3574–3580 Hellstrom SL, Vosgueritchian M, Stoltenberg RM, Irfan I, Hammock M, Wang YB, Jia C, Guo X, Gao Y, Bao Z (2012) Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett 12:3574–3580
216.
Zurück zum Zitat Yu L, Tune DD, Shearer CJ, Shapter JG (2015) Implementation of antireflection layers for improved efficiency of carbon nanotube-silicon heterojunction solar cells. Sol Energy 118:592–599 Yu L, Tune DD, Shearer CJ, Shapter JG (2015) Implementation of antireflection layers for improved efficiency of carbon nanotube-silicon heterojunction solar cells. Sol Energy 118:592–599
217.
Zurück zum Zitat Yu L, Tune D, Shearer C, Shapter J (2015) Heterojunction solar cells based on silicon and composite films of graphene oxide and carbon nanotubes. Chemsuschem 8:2940–2947 Yu L, Tune D, Shearer C, Shapter J (2015) Heterojunction solar cells based on silicon and composite films of graphene oxide and carbon nanotubes. Chemsuschem 8:2940–2947
218.
Zurück zum Zitat Tian Y, Wang F, Liu Y, Pang F, Zhang X (2014) Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim Acta 146:646–653 Tian Y, Wang F, Liu Y, Pang F, Zhang X (2014) Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim Acta 146:646–653
219.
Zurück zum Zitat Tran MH, Jeong HK (2015) Synthesis and characterization of silver nanoparticles doped reduced graphene oxide. Chem Phys Lett 630:80–85 Tran MH, Jeong HK (2015) Synthesis and characterization of silver nanoparticles doped reduced graphene oxide. Chem Phys Lett 630:80–85
220.
Zurück zum Zitat Dao VD, Jung SH, Kim JS, Tran QC, Chong SA, Larina LL, Choi HS (2015) AuNP/graphene nanohybrid prepared by dry plasma reduction as a low-cost counter electrode material for dye-sensitized solar cells. Electrochim Acta 156:138–146 Dao VD, Jung SH, Kim JS, Tran QC, Chong SA, Larina LL, Choi HS (2015) AuNP/graphene nanohybrid prepared by dry plasma reduction as a low-cost counter electrode material for dye-sensitized solar cells. Electrochim Acta 156:138–146
221.
Zurück zum Zitat Han M, Ryu BD, Hyung JH, Han N, Park YJ, Ko KB, Kang KK, Cuong TV, Hong CH (2017) Enhanced thermal stability of reduced graphene oxide-Silicon Schottky heterojunction solar cells via nitrogen doping. Mater Sci Semicond Process 59:45–49 Han M, Ryu BD, Hyung JH, Han N, Park YJ, Ko KB, Kang KK, Cuong TV, Hong CH (2017) Enhanced thermal stability of reduced graphene oxide-Silicon Schottky heterojunction solar cells via nitrogen doping. Mater Sci Semicond Process 59:45–49
222.
Zurück zum Zitat Lee WC, Tsai ML, Chen YL, Tu WC (2017) Fabrication and analysis of chemically-derived graphene/pyramidal si heterojunction solar cells. Sci Rep 7:46478 Lee WC, Tsai ML, Chen YL, Tu WC (2017) Fabrication and analysis of chemically-derived graphene/pyramidal si heterojunction solar cells. Sci Rep 7:46478
223.
Zurück zum Zitat Nandi A, Majumdar S, Datta SK, Saha H, Hossain SM (2017) Optical and electrical effects of thin reduced graphene oxide layers on textured wafer-based c-Si solar cells for enhanced performance. J Mater Chem C 5:1920–1934 Nandi A, Majumdar S, Datta SK, Saha H, Hossain SM (2017) Optical and electrical effects of thin reduced graphene oxide layers on textured wafer-based c-Si solar cells for enhanced performance. J Mater Chem C 5:1920–1934
224.
Zurück zum Zitat Mohammed M, Li Z, Cui J, Chen T (2012) Junction investigation of graphene/silicon Schottky diodes. Nanoscale Res Lett 7:302 Mohammed M, Li Z, Cui J, Chen T (2012) Junction investigation of graphene/silicon Schottky diodes. Nanoscale Res Lett 7:302
225.
Zurück zum Zitat Behura SK, Nayak S, Mukhopadhyay I, Jani O (2014) Junction characteristics of chemically-derived graphene/p-Si heterojunction solar cell. Carbon 67:766–774 Behura SK, Nayak S, Mukhopadhyay I, Jani O (2014) Junction characteristics of chemically-derived graphene/p-Si heterojunction solar cell. Carbon 67:766–774
226.
Zurück zum Zitat Kalita G, Wakita K, Umeno M, Tanemura M (2013) Fabrication and characteristics of solution-processed graphene oxide-silicon heterojunction. Phys Stat Solidi RRL 7:340–343 Kalita G, Wakita K, Umeno M, Tanemura M (2013) Fabrication and characteristics of solution-processed graphene oxide-silicon heterojunction. Phys Stat Solidi RRL 7:340–343
227.
Zurück zum Zitat Zhu M, Li X, Guo Y, Li X, Sun P, Zang X, Wang K, Zhong M, Wu D, Zhu H (2014) Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. Nanoscale 6:4909–4914 Zhu M, Li X, Guo Y, Li X, Sun P, Zang X, Wang K, Zhong M, Wu D, Zhu H (2014) Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. Nanoscale 6:4909–4914
228.
Zurück zum Zitat Larsen LJ, Shearer CJ, Ellis AV, Shapter JG (2015) Optimization and doping of reduced graphene oxide-silicon solar cells. J Phys Chem C 120:15648–15656 Larsen LJ, Shearer CJ, Ellis AV, Shapter JG (2015) Optimization and doping of reduced graphene oxide-silicon solar cells. J Phys Chem C 120:15648–15656
229.
Zurück zum Zitat He L, Tjong SC (2017) Silver-decorated reduced graphene oxides as novel building blocks for transparent conductive films. RSC Adv 7:2058–2065 He L, Tjong SC (2017) Silver-decorated reduced graphene oxides as novel building blocks for transparent conductive films. RSC Adv 7:2058–2065
230.
Zurück zum Zitat Ning J, Hao L, Jin M, Qiu X, Shen Y, Liang J, Zhang X, Wang B, Li X, Zhi L (2017) A facile reduction method for roll-to-roll production of high performance graphene-based transparent conductive films. Adv Mater 29:1605028 Ning J, Hao L, Jin M, Qiu X, Shen Y, Liang J, Zhang X, Wang B, Li X, Zhi L (2017) A facile reduction method for roll-to-roll production of high performance graphene-based transparent conductive films. Adv Mater 29:1605028
231.
Zurück zum Zitat Gomez-Navarro C, Thomas Weitz R, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503 Gomez-Navarro C, Thomas Weitz R, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503
232.
Zurück zum Zitat Kaiser AB, Gomez-Navarro C, Sundaram RS, Burghard M, Kern K (2009) Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett 9:1787–1792 Kaiser AB, Gomez-Navarro C, Sundaram RS, Burghard M, Kern K (2009) Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett 9:1787–1792
233.
Zurück zum Zitat Lancellotti L, Polichetti T, Ricciardella F, Tari O, Gnanapragasam S, Daliento S, Di Francia G (2012) Graphene applications in Schottky barrier solar cells. Thin Solid Films 522:390–394 Lancellotti L, Polichetti T, Ricciardella F, Tari O, Gnanapragasam S, Daliento S, Di Francia G (2012) Graphene applications in Schottky barrier solar cells. Thin Solid Films 522:390–394
234.
Zurück zum Zitat Alnuaimi A, Almansouri I, Saadat I, Nayfeh A (2018) High performance graphene-silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition. Sol Energy 164:174–179 Alnuaimi A, Almansouri I, Saadat I, Nayfeh A (2018) High performance graphene-silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition. Sol Energy 164:174–179
235.
Zurück zum Zitat Liu CP, Hui YY, Chen ZH, Ren JG, Zhou Y, Tang L, Tang YB, Zapien JA, Lau SP (2013) Solution-processable graphene oxide as an insulator layer for metal-insulator-semiconductor silicon solar cells. RSC Adv 3:17918–17923 Liu CP, Hui YY, Chen ZH, Ren JG, Zhou Y, Tang L, Tang YB, Zapien JA, Lau SP (2013) Solution-processable graphene oxide as an insulator layer for metal-insulator-semiconductor silicon solar cells. RSC Adv 3:17918–17923
237.
Metadaten
Titel
Review and assessment of photovoltaic performance of graphene/Si heterojunction solar cells
verfasst von
Mohd Faizol Abdullah
Abdul Manaf Hashim
Publikationsdatum
26.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2947-3

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Science 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.