Skip to main content

2023 | OriginalPaper | Buchkapitel

Review of FEM Simulations to Elucidate Fracture Mechanisms in Bamboo

verfasst von : Raviduth Ramful

Erschienen in: Bamboo and Sustainable Construction

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Being a natural material of complex and orthotropic nature, the fracture displayed by bamboo remains widely unsolved to date. The fracture of natural bamboo is contingent on several external factors ranging from environmental to physical ones such as maturity and humidity. To elucidate the intricate fracture mechanisms in bamboo, there is a need to suppress numerous variables observed in natural materials, namely natural defects, geometry, and other physical and mechanical characteristics. One proven technique, which has shown numerous benefits to probing further into the fracture mechanisms of natural composite materials like bamboo, is the finite element method (FEM). This chapter focuses on the state-of-the-art research involving FEM simulation which has been considered to elucidate the fracture mechanisms in whole culm bamboo. The contents of this chapter will also comprise research findings from recent studies conducted by the author in this field. The research findings, in the first instance, will cover the effects of contributing factors such as material inhomogeneity, thermal modification, and direction of loading on the fracture mechanisms of bamboo. Under-researched areas involving the associated effects of physical and geometrical factors on the fracture of bamboo requiring further application of FEM techniques are also covered. Despite its wide usage over the last decades, the advent of high-end FEM simulation capabilities could exert a key role in elucidating the complex fracture mechanisms in bamboo products and bamboo-inspired structures. Besides, FEM can as well be considered to optimize the material structure of similar bio-inspired and advanced composites in further research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Trujillo D, Jangra S, Gibson JM (2017) Flexural properties as a basis for bamboo strength grading. Proc Inst Civ Eng Struct Build 170(4):284–294CrossRef Trujillo D, Jangra S, Gibson JM (2017) Flexural properties as a basis for bamboo strength grading. Proc Inst Civ Eng Struct Build 170(4):284–294CrossRef
2.
Zurück zum Zitat Ribeiro RAS, Ribeiro MGS, Miranda IP (2017) Bending strength and nondestructive evaluation of structural bamboo. Constr Build Mater 146:38–42CrossRef Ribeiro RAS, Ribeiro MGS, Miranda IP (2017) Bending strength and nondestructive evaluation of structural bamboo. Constr Build Mater 146:38–42CrossRef
3.
Zurück zum Zitat Kappel R, Mattheck C, Bethge K, Tesari I (2004) Bamboo as a composite structure and its mechanical failure behaviour. WIT Trans Ecol Environ 73 Kappel R, Mattheck C, Bethge K, Tesari I (2004) Bamboo as a composite structure and its mechanical failure behaviour. WIT Trans Ecol Environ 73
4.
Zurück zum Zitat Huang YS, Hsu FL, Lee CM, Juang JY (2017) Failure mechanism of hollow tree trunks due to cross-sectional flattening. R Soc Open Sci 4(4):160972CrossRef Huang YS, Hsu FL, Lee CM, Juang JY (2017) Failure mechanism of hollow tree trunks due to cross-sectional flattening. R Soc Open Sci 4(4):160972CrossRef
5.
Zurück zum Zitat Spatz HC, Niklas KJ (2013) Modes of failure in tubular plant organs. Am J Bot 100(2):332–336CrossRef Spatz HC, Niklas KJ (2013) Modes of failure in tubular plant organs. Am J Bot 100(2):332–336CrossRef
6.
Zurück zum Zitat Trujillo DJ, López LF (2020) Bamboo material characterisation. In: Nonconventional and vernacular construction materials. Woodhead Publishing, pp 491–520 Trujillo DJ, López LF (2020) Bamboo material characterisation. In: Nonconventional and vernacular construction materials. Woodhead Publishing, pp 491–520
7.
Zurück zum Zitat Askarinejad S, Kotowski P, Shalchy F, Rahbar N (2015) Effects of humidity on shear behavior of bamboo. Theor Appl Mech Lett 5(6):236–243CrossRef Askarinejad S, Kotowski P, Shalchy F, Rahbar N (2015) Effects of humidity on shear behavior of bamboo. Theor Appl Mech Lett 5(6):236–243CrossRef
8.
Zurück zum Zitat Qiu Z, Fan H (2020) Nonlinear modeling of bamboo fiber reinforced composite materials. Compos Struct 238:111976CrossRef Qiu Z, Fan H (2020) Nonlinear modeling of bamboo fiber reinforced composite materials. Compos Struct 238:111976CrossRef
9.
Zurück zum Zitat Shao ZP, Fang CH, Tian GL (2009) Mode I interlaminar fracture property of moso bamboo (Phyllostachys pubescens). Wood Sci Technol 43(5):527–536CrossRef Shao ZP, Fang CH, Tian GL (2009) Mode I interlaminar fracture property of moso bamboo (Phyllostachys pubescens). Wood Sci Technol 43(5):527–536CrossRef
10.
Zurück zum Zitat Askarinejad S, Kotowski P, Youssefian S, Rahbar N (2016) Fracture and mixed-mode resistance curve behavior of bamboo. Mech Res Commun 78:79–85CrossRef Askarinejad S, Kotowski P, Youssefian S, Rahbar N (2016) Fracture and mixed-mode resistance curve behavior of bamboo. Mech Res Commun 78:79–85CrossRef
11.
Zurück zum Zitat Shao Z, Wang F (2018) Introduction to the application of the fracture mechanics in wood and bamboo. In: The fracture mechanics of plant materials. Springer, Singapore, pp 1–10 Shao Z, Wang F (2018) Introduction to the application of the fracture mechanics in wood and bamboo. In: The fracture mechanics of plant materials. Springer, Singapore, pp 1–10
12.
Zurück zum Zitat Chen M, Dai C, Liu R, Lian C, Yuan J, Fang C, Fei B (2020) Influence of cell wall structure on the fracture behavior of bamboo (Phyllostachys edulis) fibers. Ind Crops Prod 155:112787CrossRef Chen M, Dai C, Liu R, Lian C, Yuan J, Fang C, Fei B (2020) Influence of cell wall structure on the fracture behavior of bamboo (Phyllostachys edulis) fibers. Ind Crops Prod 155:112787CrossRef
13.
Zurück zum Zitat Chen Q, Dai C, Fang C, Chen M, Zhang S, Liu R, Liu X, Fei B (2019) Mode I interlaminar fracture toughness behavior and mechanisms of bamboo. Mater Des 183:108132CrossRef Chen Q, Dai C, Fang C, Chen M, Zhang S, Liu R, Liu X, Fei B (2019) Mode I interlaminar fracture toughness behavior and mechanisms of bamboo. Mater Des 183:108132CrossRef
14.
Zurück zum Zitat Ramful R, Sakuma A (2020) Investigation of the effect of inhomogeneous material on the fracture mechanisms of bamboo by finite element method. Materials 13(21):5039CrossRef Ramful R, Sakuma A (2020) Investigation of the effect of inhomogeneous material on the fracture mechanisms of bamboo by finite element method. Materials 13(21):5039CrossRef
15.
Zurück zum Zitat Nugroho N, Bahtiar ET (2017) Structural grading of Gigantochloa apus bamboo based on its flexural properties. Constr Build Mater 157:1173–1189CrossRef Nugroho N, Bahtiar ET (2017) Structural grading of Gigantochloa apus bamboo based on its flexural properties. Constr Build Mater 157:1173–1189CrossRef
16.
Zurück zum Zitat Nogata F, Takahashi H (1995) Intelligent functionally graded material: bamboo. Compos Eng 5(7):743–751CrossRef Nogata F, Takahashi H (1995) Intelligent functionally graded material: bamboo. Compos Eng 5(7):743–751CrossRef
17.
Zurück zum Zitat Sharma B, Harries KA, Ghavami K (2013) Methods of determining transverse mechanical properties of full-culm bamboo. Constr Build Mater 38:627–637CrossRef Sharma B, Harries KA, Ghavami K (2013) Methods of determining transverse mechanical properties of full-culm bamboo. Constr Build Mater 38:627–637CrossRef
18.
Zurück zum Zitat Keogh L, O’Hanlon P, O’Reilly P, Taylor D (2015) Fatigue in bamboo. Int J Fatigue 75:51–56CrossRef Keogh L, O’Hanlon P, O’Reilly P, Taylor D (2015) Fatigue in bamboo. Int J Fatigue 75:51–56CrossRef
19.
Zurück zum Zitat Xu YM (2006) Wood science. China Forestry Publishing, Beijing, China, p 181 Xu YM (2006) Wood science. China Forestry Publishing, Beijing, China, p 181
20.
Zurück zum Zitat Cui J, Qin Z, Masic A, Buehler MJ (2020) Multiscale structural insights of load bearing bamboo: a computational modeling approach. J Mech Behav Biomed Mater 107:103743CrossRef Cui J, Qin Z, Masic A, Buehler MJ (2020) Multiscale structural insights of load bearing bamboo: a computational modeling approach. J Mech Behav Biomed Mater 107:103743CrossRef
21.
Zurück zum Zitat Gauss C, Savastano Jr H, Harries KA (2019) Use of ISO 22157 mechanical test methods and the characterisation of Brazilian P. edulis bamboo. Constr Build Mater 228:116728 Gauss C, Savastano Jr H, Harries KA (2019) Use of ISO 22157 mechanical test methods and the characterisation of Brazilian P. edulis bamboo. Constr Build Mater 228:116728
22.
Zurück zum Zitat Zhang X, Li J, Yu Z, Yu Y, Wang H (2017) Compressive failure mechanism and buckling analysis of the graded hierarchical bamboo structure. J Mater Sci 52(12):6999–7007CrossRef Zhang X, Li J, Yu Z, Yu Y, Wang H (2017) Compressive failure mechanism and buckling analysis of the graded hierarchical bamboo structure. J Mater Sci 52(12):6999–7007CrossRef
23.
Zurück zum Zitat Deng J, Chen F, Wang G, Zhang W (2016) Variation of parallel-to-grain compression and shearing properties in moso bamboo culm (Phyllostachys pubescens). BioResources 11(1):1784–1795CrossRef Deng J, Chen F, Wang G, Zhang W (2016) Variation of parallel-to-grain compression and shearing properties in moso bamboo culm (Phyllostachys pubescens). BioResources 11(1):1784–1795CrossRef
24.
Zurück zum Zitat Moss DR (2004) General topics. In: Pressure vessel design manual. Elsevier, pp 1–36 Moss DR (2004) General topics. In: Pressure vessel design manual. Elsevier, pp 1–36
25.
Zurück zum Zitat Reynolds T, Sharma B, Harries K, Ramage M (2016) Dowelled structural connections in laminated bamboo and timber. Compos B Eng 90:232–240CrossRef Reynolds T, Sharma B, Harries K, Ramage M (2016) Dowelled structural connections in laminated bamboo and timber. Compos B Eng 90:232–240CrossRef
26.
Zurück zum Zitat Ghavami K (2016) Introduction to nonconventional materials and an historic retrospective of the field. In: Nonconventional and vernacular construction materials. Woodhead Publishing, pp 37–61 Ghavami K (2016) Introduction to nonconventional materials and an historic retrospective of the field. In: Nonconventional and vernacular construction materials. Woodhead Publishing, pp 37–61
27.
Zurück zum Zitat Brazier LG (1927) On the flexure of thin cylindrical shells and other “thin” sections. Proc R Soc Lond Ser A 116(773):104–114 Brazier LG (1927) On the flexure of thin cylindrical shells and other “thin” sections. Proc R Soc Lond Ser A 116(773):104–114
28.
Zurück zum Zitat Moran R, Webb K, Harries K, García JJ (2017) Edge bearing tests to assess the influence of radial gradation on the transverse behavior of bamboo. Constr Build Mater 131:574–584CrossRef Moran R, Webb K, Harries K, García JJ (2017) Edge bearing tests to assess the influence of radial gradation on the transverse behavior of bamboo. Constr Build Mater 131:574–584CrossRef
29.
Zurück zum Zitat Wang F, Shao Z, Wu Y (2013) Mode II interlaminar fracture properties of Moso bamboo. Compos B Eng 44(1):242–247CrossRef Wang F, Shao Z, Wu Y (2013) Mode II interlaminar fracture properties of Moso bamboo. Compos B Eng 44(1):242–247CrossRef
30.
Zurück zum Zitat Silva ECN, Walters MC, Paulino GH (2006) Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials. J Mater Sci 41(21):6991–7004CrossRef Silva ECN, Walters MC, Paulino GH (2006) Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials. J Mater Sci 41(21):6991–7004CrossRef
31.
Zurück zum Zitat Ramful R (2022) Investigation of the transverse fracture mechanisms of bamboo by the finite element method. J Mater Sci 57(11):6233–6248CrossRef Ramful R (2022) Investigation of the transverse fracture mechanisms of bamboo by the finite element method. J Mater Sci 57(11):6233–6248CrossRef
32.
Zurück zum Zitat Vasic S, Stanzl-Tschegg S (2007) Experimental and numerical investigation of wood fracture mechanisms at different humidity levels Vasic S, Stanzl-Tschegg S (2007) Experimental and numerical investigation of wood fracture mechanisms at different humidity levels
33.
Zurück zum Zitat Schoenmakers JCM, Jorissen AJM, Leijten AJM (2010) Evaluation and modelling of perpendicular to grain embedment strength. Wood Sci Technol 44(4):579–595CrossRef Schoenmakers JCM, Jorissen AJM, Leijten AJM (2010) Evaluation and modelling of perpendicular to grain embedment strength. Wood Sci Technol 44(4):579–595CrossRef
34.
Zurück zum Zitat Qiu LP, Zhu EC, Van de Kuilen JWG (2014) Modeling crack propagation in wood by extended finite element method. Eur J Wood Wood Prod 72(2):273–283CrossRef Qiu LP, Zhu EC, Van de Kuilen JWG (2014) Modeling crack propagation in wood by extended finite element method. Eur J Wood Wood Prod 72(2):273–283CrossRef
35.
Zurück zum Zitat Bieniaś J, Dadej K (2020) Fatigue delamination growth of carbon and glass reinforced fiber metal laminates in fracture mode II. Int J Fatigue 130:105267CrossRef Bieniaś J, Dadej K (2020) Fatigue delamination growth of carbon and glass reinforced fiber metal laminates in fracture mode II. Int J Fatigue 130:105267CrossRef
36.
Zurück zum Zitat Monticeli FM, Daou D, Peković O, Simonović A, Voorwald HJC, Cioffi MOH (2020) FEA simulation and experimental validation of mode I and II delamination at the carbon/glass/epoxy hybrid interface: physical-based interpretation. Compos Commun 22:100532CrossRef Monticeli FM, Daou D, Peković O, Simonović A, Voorwald HJC, Cioffi MOH (2020) FEA simulation and experimental validation of mode I and II delamination at the carbon/glass/epoxy hybrid interface: physical-based interpretation. Compos Commun 22:100532CrossRef
37.
Zurück zum Zitat Khan Z, Yousif BF, Islam M (2017) Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos B Eng 116:186–199CrossRef Khan Z, Yousif BF, Islam M (2017) Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos B Eng 116:186–199CrossRef
38.
Zurück zum Zitat Meyers MA, Chawla KK (2008) Mechanical behavior of materials. Cambridge University PressCrossRef Meyers MA, Chawla KK (2008) Mechanical behavior of materials. Cambridge University PressCrossRef
39.
Zurück zum Zitat Youssefian S, Rahbar N (2015) Molecular origin of strength and stiffness in bamboo fibrils. Sci Rep 5(1):1–13CrossRef Youssefian S, Rahbar N (2015) Molecular origin of strength and stiffness in bamboo fibrils. Sci Rep 5(1):1–13CrossRef
40.
Zurück zum Zitat Dixon PG, Gibson LJ (2014) The structure and mechanics of Moso bamboo material. J R Soc Interface 11(99):20140321CrossRef Dixon PG, Gibson LJ (2014) The structure and mechanics of Moso bamboo material. J R Soc Interface 11(99):20140321CrossRef
41.
Zurück zum Zitat Ramful R, Sakuma A (2021) Effect of smoke treatment on flexural strength of bamboo hierarchical structure. BioResources 16(1):387CrossRef Ramful R, Sakuma A (2021) Effect of smoke treatment on flexural strength of bamboo hierarchical structure. BioResources 16(1):387CrossRef
42.
Zurück zum Zitat Lilholt H, Talreja R (1982) Fatigue and creep of composite materials. In: Proceedings of the 3rd Risø international symposium on metallurgy and materials science. Risø National Laboratory Lilholt H, Talreja R (1982) Fatigue and creep of composite materials. In: Proceedings of the 3rd Risø international symposium on metallurgy and materials science. Risø National Laboratory
43.
Zurück zum Zitat Amada S, Munekata T, Nagase Y, Ichikawa Y, Kirigai A, Zhifei Y (1996) The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials. J Compos Mater 30(7):800–819CrossRef Amada S, Munekata T, Nagase Y, Ichikawa Y, Kirigai A, Zhifei Y (1996) The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials. J Compos Mater 30(7):800–819CrossRef
44.
Zurück zum Zitat Habibi MK, Samaei AT, Gheshlaghi B, Lu J, Lu Y (2015) Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: underlying mechanisms. Acta Biomater 16:178–186CrossRef Habibi MK, Samaei AT, Gheshlaghi B, Lu J, Lu Y (2015) Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: underlying mechanisms. Acta Biomater 16:178–186CrossRef
45.
Zurück zum Zitat Obataya E, Kitin P, Yamauchi H (2007) Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber–foam composite structure. Wood Sci Technol 41(5):385–400CrossRef Obataya E, Kitin P, Yamauchi H (2007) Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber–foam composite structure. Wood Sci Technol 41(5):385–400CrossRef
46.
Zurück zum Zitat Azadeh A, Ghavami K (2018) The influence of heat on shrinkage and water absorption of Dendrocalamus giganteus bamboo as a functionally graded material. Constr Build Mater 186:145–154CrossRef Azadeh A, Ghavami K (2018) The influence of heat on shrinkage and water absorption of Dendrocalamus giganteus bamboo as a functionally graded material. Constr Build Mater 186:145–154CrossRef
47.
Zurück zum Zitat Ramful R, Sunthar TP, Zhu W, Pezzotti G (2021) Investigating the underlying effect of thermal modification on shrinkage behavior of bamboo culm by experimental and numerical methods. Materials 14(4):974CrossRef Ramful R, Sunthar TP, Zhu W, Pezzotti G (2021) Investigating the underlying effect of thermal modification on shrinkage behavior of bamboo culm by experimental and numerical methods. Materials 14(4):974CrossRef
48.
Zurück zum Zitat Huang P, Chang WS, Ansell MP, Bowen CR, Chew JY, Adamaki V (2018) Thermal and hygroscopic expansion characteristics of bamboo. Proc Inst Civ Eng Struct Build 171(6):463–471CrossRef Huang P, Chang WS, Ansell MP, Bowen CR, Chew JY, Adamaki V (2018) Thermal and hygroscopic expansion characteristics of bamboo. Proc Inst Civ Eng Struct Build 171(6):463–471CrossRef
49.
Zurück zum Zitat Yu HQ, Jiang ZH, Hse CY, Shupe TF (2008) Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). J Trop For Sci:258–263 Yu HQ, Jiang ZH, Hse CY, Shupe TF (2008) Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). J Trop For Sci:258–263
50.
Zurück zum Zitat Hone T, Cahill L, Robinson A, Korde C, Taylor D (2020) The splitting of bamboo in response to changes in humidity and temperature. J Mech Behav Biomed Mater 111:103990CrossRef Hone T, Cahill L, Robinson A, Korde C, Taylor D (2020) The splitting of bamboo in response to changes in humidity and temperature. J Mech Behav Biomed Mater 111:103990CrossRef
51.
Zurück zum Zitat Boonstra MJ, Van Acker J, Kegel E, Stevens M (2007) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41(1):31–57CrossRef Boonstra MJ, Van Acker J, Kegel E, Stevens M (2007) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41(1):31–57CrossRef
52.
Zurück zum Zitat Tang T, Zhang B, Liu X, Wang W, Chen X, Fei B (2019) Synergistic effects of tung oil and heat treatment on physicochemical properties of bamboo materials. Sci Rep 9(1):1–11CrossRef Tang T, Zhang B, Liu X, Wang W, Chen X, Fei B (2019) Synergistic effects of tung oil and heat treatment on physicochemical properties of bamboo materials. Sci Rep 9(1):1–11CrossRef
53.
Zurück zum Zitat Palombini FL, de Araujo Mariath JE, de Oliveira BF (2020) Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo. Thin-Walled Struct 155:106936CrossRef Palombini FL, de Araujo Mariath JE, de Oliveira BF (2020) Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo. Thin-Walled Struct 155:106936CrossRef
54.
Zurück zum Zitat Zhang T, Wang A, Wang Q, Guan F (2019) Bending characteristics analysis and lightweight design of a bionic beam inspired by bamboo structures. Thin-Walled Struct 142:476–498CrossRef Zhang T, Wang A, Wang Q, Guan F (2019) Bending characteristics analysis and lightweight design of a bionic beam inspired by bamboo structures. Thin-Walled Struct 142:476–498CrossRef
Metadaten
Titel
Review of FEM Simulations to Elucidate Fracture Mechanisms in Bamboo
verfasst von
Raviduth Ramful
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-0232-3_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.