Skip to main content

2022 | OriginalPaper | Buchkapitel

Review on Hydrotalcite-Derived Material from Waste Metal Dust, a Solid Adsorbent for CO2 Capture: Challenges and Opportunities in South African Coal-Fired Thermal Plant

verfasst von : Daniel Ogochukwu Okanigbe, Abimbola Patricia Popoola, Olawale Moshood Popoola, Prudence Mamasia Moshokwa

Erschienen in: REWAS 2022: Energy Technologies and CO2 Management (Volume II)

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main contributor to global warming is carbon dioxide (CO2), herewith referred to as a greenhouse gas, with a growth of nearly 2.7%, 60% above that recorded around late twentieth century. Globally, the regulation and minimization of CO2 have consequently become a consensus. In South Africa (SA), most CO2 releases are from burning coal and future forecasts show that CO2 releases will increase more and more should there be no counter-progress in the creation of carbon capture technologies (CCT). Additionally, by integrating CCT into the main sources of anthropogenic CO2 releases, like coal power plants (CPPs), challenges of CO2 releases will be brought to the barest minimal. Despite the challenge it presents, yet an inherent research opportunity therein, with possibility of developing a novel CCT. Hence, this paper presented a review on the theme “hydrotalcite-derived material from waste metal dust, a solid adsorbent for CO2 capture: Challenges and opportunities in SA’s CPPs”. This theme was subdivided into the following sub-themes: challenges and opportunities inherent in SA’s CPPs; review of past and current publications on CO2 capture from CPP. The conclusions reached are that the use of waste metal dust and/or coal fly ash to produce solid adsorbents will go a long way to saving significant cost of managing CO2 emissions, while the conversion of this waste to product amongst other benefits will strengthen the goal of achieving a circular economy in the mining industry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kumar N, Mukherjee S, Harvey-Reid NC, Bezrukov AA, Tan K, Martins V, Vandichel M, Pham T, van Wyk LM, Oyekan K, Kuma A (2021) Breaking the trade-off between selectivity and adsorption capacity for gas separation. Chem 7(11):3085–3098CrossRef Kumar N, Mukherjee S, Harvey-Reid NC, Bezrukov AA, Tan K, Martins V, Vandichel M, Pham T, van Wyk LM, Oyekan K, Kuma A (2021) Breaking the trade-off between selectivity and adsorption capacity for gas separation. Chem 7(11):3085–3098CrossRef
2.
Zurück zum Zitat Thopil GA, Pouris A (2015) Aggregation and internalization of electricity externalities in South Africa. Energy 82:501–511CrossRef Thopil GA, Pouris A (2015) Aggregation and internalization of electricity externalities in South Africa. Energy 82:501–511CrossRef
3.
Zurück zum Zitat Dabrowski JM, Ashton PJ, Murray K, Leaner JJ, Mason RP (2008) Anthropogenic mercury emissions in South Africa: coal combustion in power plants. Atmos Environ 42(27):6620–6626CrossRef Dabrowski JM, Ashton PJ, Murray K, Leaner JJ, Mason RP (2008) Anthropogenic mercury emissions in South Africa: coal combustion in power plants. Atmos Environ 42(27):6620–6626CrossRef
4.
Zurück zum Zitat Freiman MT, Piketh SJ (2003) Air transport into and out of the industrial Highveld region of South Africa. J Appl Meteorol Climatol 42(7):994–1002CrossRef Freiman MT, Piketh SJ (2003) Air transport into and out of the industrial Highveld region of South Africa. J Appl Meteorol Climatol 42(7):994–1002CrossRef
5.
Zurück zum Zitat Kuang C (2021) Analysis of green house gases and positive impact of replacing traditional energy with clean energy. In: E3S Web of Conferences, vol 241. EDP Sciences, p 02005 Kuang C (2021) Analysis of green house gases and positive impact of replacing traditional energy with clean energy. In: E3S Web of Conferences, vol 241. EDP Sciences, p 02005
7.
Zurück zum Zitat Shikwambana L, Mhangara P, Mbatha N (2020) Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. Int J Appl Earth Observ Geoinf 91:102130 Shikwambana L, Mhangara P, Mbatha N (2020) Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. Int J Appl Earth Observ Geoinf 91:102130
8.
Zurück zum Zitat Beck B, Surridge T, Hietkamp S (2013) The South African centre for carbon capture and storage delivering CCS in the developing world. Energy Procedia 37:6502–6507CrossRef Beck B, Surridge T, Hietkamp S (2013) The South African centre for carbon capture and storage delivering CCS in the developing world. Energy Procedia 37:6502–6507CrossRef
9.
Zurück zum Zitat International Organization for Standardization (2006) Environmental management: life cycle assessment; principles and framework, vol 14044. ISO International Organization for Standardization (2006) Environmental management: life cycle assessment; principles and framework, vol 14044. ISO
10.
Zurück zum Zitat Mbohwa C (2013) Life cycle assessment of a coal-fired old thermal power plant. Proc World Cong Eng 1:2078–958 Mbohwa C (2013) Life cycle assessment of a coal-fired old thermal power plant. Proc World Cong Eng 1:2078–958
11.
Zurück zum Zitat Rathnayake M, Julnipitawong P, Tangtermsirikul S, Toochinda P (2018) Utilization of coal fly ash and bottom ash as solid sorbents for sulfur dioxide reduction from coal fired power plant: Life cycle assessment and applications. J Clean Prod 202:934–945CrossRef Rathnayake M, Julnipitawong P, Tangtermsirikul S, Toochinda P (2018) Utilization of coal fly ash and bottom ash as solid sorbents for sulfur dioxide reduction from coal fired power plant: Life cycle assessment and applications. J Clean Prod 202:934–945CrossRef
12.
Zurück zum Zitat Mittal ML, Sharma C, Singh R (2012) August. Estimates of emissions from coal fired thermal power plants in India. In: 2012 International emission inventory conference pp 13–16 Mittal ML, Sharma C, Singh R (2012) August. Estimates of emissions from coal fired thermal power plants in India. In: 2012 International emission inventory conference pp 13–16
13.
Zurück zum Zitat Liang X, Wang Z, Zhou Z, Huang Z, Zhou J, Cen K (2013) Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. J Clean Prod 39:24–31CrossRef Liang X, Wang Z, Zhou Z, Huang Z, Zhou J, Cen K (2013) Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. J Clean Prod 39:24–31CrossRef
14.
Zurück zum Zitat Liu Y, Dai Z, Zhang Z, Zeng S, Li F, Zhang X, Nie Y, Zhang L, Zhang S, Ji X (2021) Ionic liquids/deep eutectic solvents for CO2 capture: reviewing and evaluating. Green Energy Environ 6(3):314–328CrossRef Liu Y, Dai Z, Zhang Z, Zeng S, Li F, Zhang X, Nie Y, Zhang L, Zhang S, Ji X (2021) Ionic liquids/deep eutectic solvents for CO2 capture: reviewing and evaluating. Green Energy Environ 6(3):314–328CrossRef
15.
Zurück zum Zitat Ochedi FO, Yu J, Yu H, Liu Y, Hussain A (2020) Carbon dioxide capture using liquid absorption methods: a review. Environ Chem Lett 1–33 Ochedi FO, Yu J, Yu H, Liu Y, Hussain A (2020) Carbon dioxide capture using liquid absorption methods: a review. Environ Chem Lett 1–33
16.
Zurück zum Zitat Shavalieva G, Kazepidis P, Papadopoulos AI, Seferlis P, Papadokonstantakis S (2021) Environmental, health and safety assessment of post-combustion CO2 capture processes with phase-change solvents. Sustainable Prod Consumpt 25:60–76CrossRef Shavalieva G, Kazepidis P, Papadopoulos AI, Seferlis P, Papadokonstantakis S (2021) Environmental, health and safety assessment of post-combustion CO2 capture processes with phase-change solvents. Sustainable Prod Consumpt 25:60–76CrossRef
17.
Zurück zum Zitat Wang J, Liu L, Zeng X, Li K (2021) Solar-assisted CO2 capture with amine and ammonia-based chemical absorption: a comparative study. Thermal Sci 25(1 Part B):717–732 Wang J, Liu L, Zeng X, Li K (2021) Solar-assisted CO2 capture with amine and ammonia-based chemical absorption: a comparative study. Thermal Sci 25(1 Part B):717–732
18.
Zurück zum Zitat Ahmad MZ, Fuoco A, (2021) Porous liquids–future for CO2 capture and separation. Current Res Green Sustainable Chem 4:100070 Ahmad MZ, Fuoco A, (2021) Porous liquids–future for CO2 capture and separation. Current Res Green Sustainable Chem 4:100070
19.
Zurück zum Zitat Cannone SF, Lanzini A, A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates. Energies 14(2):387CrossRef Cannone SF, Lanzini A, A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates. Energies 14(2):387CrossRef
20.
Zurück zum Zitat Janakiram S, Santinelli F, Costi R, Lindbråthen A, Nardelli GM, Milkowski K, Ansaloni L, Deng L (2021) Field trial of hollow fiber modules of hybrid facilitated transport membranes for flue gas CO2 capture in cement industry. Chemi Eng J 413:127405 Janakiram S, Santinelli F, Costi R, Lindbråthen A, Nardelli GM, Milkowski K, Ansaloni L, Deng L (2021) Field trial of hollow fiber modules of hybrid facilitated transport membranes for flue gas CO2 capture in cement industry. Chemi Eng J 413:127405
21.
Zurück zum Zitat Kratky L, Kolacny J, Sulc R (2021) Experimental study on CO2 membrane separation from slue gas. Chem Eng Trans 86:1075–1080 Kratky L, Kolacny J, Sulc R (2021) Experimental study on CO2 membrane separation from slue gas. Chem Eng Trans 86:1075–1080
22.
Zurück zum Zitat Wang Y, Lu J, Qi J, Lang X, Fan S, Yu C, Li G (2021) High selectivity CO2 capture from biogas by hydration separation based on the kinetic difference in the presence of 1, 1-Dichloro-1-fluoroethane. Energy Fuels 35:10689–10702CrossRef Wang Y, Lu J, Qi J, Lang X, Fan S, Yu C, Li G (2021) High selectivity CO2 capture from biogas by hydration separation based on the kinetic difference in the presence of 1, 1-Dichloro-1-fluoroethane. Energy Fuels 35:10689–10702CrossRef
24.
Zurück zum Zitat Koohestanian E, Shahraki F (2021) Review on principles, recent progress, and future challenges for oxy-fuel combustion CO2 capture using compression and purification unit. J Environ Chem Eng 9(4):105777 Koohestanian E, Shahraki F (2021) Review on principles, recent progress, and future challenges for oxy-fuel combustion CO2 capture using compression and purification unit. J Environ Chem Eng 9(4):105777
25.
Zurück zum Zitat Sun R, Tian H, Song C, Deng S, Shi L, Kang K, Shu G (2021) Performance analysis and comparison of cryogenic CO2 capture system. Int J Green Energy 18(8):822–833CrossRef Sun R, Tian H, Song C, Deng S, Shi L, Kang K, Shu G (2021) Performance analysis and comparison of cryogenic CO2 capture system. Int J Green Energy 18(8):822–833CrossRef
26.
Zurück zum Zitat Kim S, Lim YI, Lee D, Seo MW, Mun TY, Lee JG (2021) Effects of flue gas recirculation on energy, exergy, environment, and economics in oxy-coal circulating fluidized-bed power plants with CO2 capture. Int J Energy Res 45(4):5852–5865CrossRef Kim S, Lim YI, Lee D, Seo MW, Mun TY, Lee JG (2021) Effects of flue gas recirculation on energy, exergy, environment, and economics in oxy-coal circulating fluidized-bed power plants with CO2 capture. Int J Energy Res 45(4):5852–5865CrossRef
27.
Zurück zum Zitat Mosaffa AH, Farshi LG (2020) Novel post combustion CO2 capture in the coal-fired power plant employing a transcritical CO2 power generation and low temperature steam upgraded by an absorption heat transformer. Energy Convers Manag 207:112542 Mosaffa AH, Farshi LG (2020) Novel post combustion CO2 capture in the coal-fired power plant employing a transcritical CO2 power generation and low temperature steam upgraded by an absorption heat transformer. Energy Convers Manag 207:112542
28.
Zurück zum Zitat Muroyama AP, Beard A, Pribyl-Kranewitter B, Gubler L (2021) Separation of CO2 fromdilute gas streams using a membrane electrochemical cell. ACS ES&T Eng Muroyama AP, Beard A, Pribyl-Kranewitter B, Gubler L (2021) Separation of CO2 fromdilute gas streams using a membrane electrochemical cell. ACS ES&T Eng
29.
Zurück zum Zitat Cloete S, Giuffrida A, Romano MC, Zaabout A (2020) Economic assessment of the swing adsorption reactor cluster for CO2 capture from cement production. J Clean Prod 275:123024 Cloete S, Giuffrida A, Romano MC, Zaabout A (2020) Economic assessment of the swing adsorption reactor cluster for CO2 capture from cement production. J Clean Prod 275:123024
30.
Zurück zum Zitat Dissanayake PD, Choi SW, Igalavithana AD, Yang X, Tsang DC, Wang CH, Kua HW, Lee KB, Ok YS (2020) Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: a facile method to designer biochar fabrication. Renew Sustain Energy Rev 124:109785 Dissanayake PD, Choi SW, Igalavithana AD, Yang X, Tsang DC, Wang CH, Kua HW, Lee KB, Ok YS (2020) Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: a facile method to designer biochar fabrication. Renew Sustain Energy Rev 124:109785
31.
Zurück zum Zitat Subraveti SG, Roussanaly S, Anantharaman R, Riboldi L, Rajendran A (2021) Techno economic assessment of optimised vacuumswing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas. Sep Purif Technol 256:117832 Subraveti SG, Roussanaly S, Anantharaman R, Riboldi L, Rajendran A (2021) Techno economic assessment of optimised vacuumswing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas. Sep Purif Technol 256:117832
32.
Zurück zum Zitat Aziz MA, Kassim KA, BakarWAWA, Jakarmi FM, Ahsan AA, Rosid SJM, Toemen S (2019) Traffic pollution: perspective overview toward carbon dioxide capture and separation method. In: Fossil free fuels. CRC Press, pp 149–186 Aziz MA, Kassim KA, BakarWAWA, Jakarmi FM, Ahsan AA, Rosid SJM, Toemen S (2019) Traffic pollution: perspective overview toward carbon dioxide capture and separation method. In: Fossil free fuels. CRC Press, pp 149–186
33.
Zurück zum Zitat Comfort SM (2017) Synthesis and evaluation of SOD-ZMOF-chitosan adsorbent for post combustion carbon dioxide capture. Doctoral dissertation, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg Comfort SM (2017) Synthesis and evaluation of SOD-ZMOF-chitosan adsorbent for post combustion carbon dioxide capture. Doctoral dissertation, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg
34.
Zurück zum Zitat Kamran U, Park SJ (2021) Chemically modified carbonaceous adsorbents for enhanced CO2 capture: a review. J Clean Prod 290:125776 Kamran U, Park SJ (2021) Chemically modified carbonaceous adsorbents for enhanced CO2 capture: a review. J Clean Prod 290:125776
35.
Zurück zum Zitat Mazari SA, Ali E, Abro R, Khan FSA, Ahmed I, Ahmed M, Nizamuddin S, Siddiqui TH, Hossain N, Mubarak NM, Shah A (2021) Nanomaterials: applications, waste-handling, environmental toxicities, and future challenges-a review. J Environ Chem Eng 9(2):105028 Mazari SA, Ali E, Abro R, Khan FSA, Ahmed I, Ahmed M, Nizamuddin S, Siddiqui TH, Hossain N, Mubarak NM, Shah A (2021) Nanomaterials: applications, waste-handling, environmental toxicities, and future challenges-a review. J Environ Chem Eng 9(2):105028
36.
Zurück zum Zitat Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU Jr (2021) Smart adsorbents for aquatic environmental remediation. Small 17(34):2007840CrossRef Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU Jr (2021) Smart adsorbents for aquatic environmental remediation. Small 17(34):2007840CrossRef
37.
Zurück zum Zitat Nie L, Mu Y, Jin J, Chen J, Mi J (2018) Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas. Chin J Chem Eng 26(11):2303–2317CrossRef Nie L, Mu Y, Jin J, Chen J, Mi J (2018) Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas. Chin J Chem Eng 26(11):2303–2317CrossRef
38.
Zurück zum Zitat Pardakhti M, Jafari T, Tobin Z, Dutta B, Moharreri E, Shemshaki NS, Suib S, Srivastava R (2019) Trends in solid adsorbent materials development for CO2 capture. ACS Appl Mater Interfaces 11(38):34533–34559CrossRef Pardakhti M, Jafari T, Tobin Z, Dutta B, Moharreri E, Shemshaki NS, Suib S, Srivastava R (2019) Trends in solid adsorbent materials development for CO2 capture. ACS Appl Mater Interfaces 11(38):34533–34559CrossRef
39.
Zurück zum Zitat Cormos AM, Cormos CC (2017) Reducing the carbon footprint of cement industry by post combustion CO2 capture: techno-economic and environmental assessment of a CCS project in Romania. Chem Eng Res Des 123:230–239CrossRef Cormos AM, Cormos CC (2017) Reducing the carbon footprint of cement industry by post combustion CO2 capture: techno-economic and environmental assessment of a CCS project in Romania. Chem Eng Res Des 123:230–239CrossRef
40.
Zurück zum Zitat Sanna A, Maroto-Valer MM (2016) Potassium-based sorbents from fly ash for high-temperature CO2 capture. Environ Sci Pollut Res 23(22):22242–22252CrossRef Sanna A, Maroto-Valer MM (2016) Potassium-based sorbents from fly ash for high-temperature CO2 capture. Environ Sci Pollut Res 23(22):22242–22252CrossRef
41.
Zurück zum Zitat Alhamed YA, Rather SU, El-Shazly AH, Zaman SF, Daous MA, Al-Zahrani AA (2015) Preparation of activated carbon from fly ash and its application for CO2 capture. Korean J Chem Eng 32(4):723–730CrossRef Alhamed YA, Rather SU, El-Shazly AH, Zaman SF, Daous MA, Al-Zahrani AA (2015) Preparation of activated carbon from fly ash and its application for CO2 capture. Korean J Chem Eng 32(4):723–730CrossRef
42.
Zurück zum Zitat Sanna A, Maroto-Valer MM (2016) CO2 capture at high temperature using fly ash-derived sodium silicates. Ind Eng Chem Res 55(14):4080–4088CrossRef Sanna A, Maroto-Valer MM (2016) CO2 capture at high temperature using fly ash-derived sodium silicates. Ind Eng Chem Res 55(14):4080–4088CrossRef
43.
Zurück zum Zitat Panek R, Wdowin M, Franus W, Czarna D, Stevens LA, Deng H, Liu J, Sun C, Liu H, Snape CE (2017) Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. J CO2 Utili 22:81–90 Panek R, Wdowin M, Franus W, Czarna D, Stevens LA, Deng H, Liu J, Sun C, Liu H, Snape CE (2017) Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. J CO2 Utili 22:81–90
44.
Zurück zum Zitat Liu L, Singh R, Xiao P, Webley PA, Zhai Y (2011) Zeolite synthesis from waste fly ash and its application in CO2 capture from flue gas streams. Adsorption 17(5):795–800CrossRef Liu L, Singh R, Xiao P, Webley PA, Zhai Y (2011) Zeolite synthesis from waste fly ash and its application in CO2 capture from flue gas streams. Adsorption 17(5):795–800CrossRef
45.
Zurück zum Zitat Muriithi GN, Petrik LF, Doucet FJ (2020) Synthesis, characterisation and CO2 adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash. J CO2 Util 36:220–230 Muriithi GN, Petrik LF, Doucet FJ (2020) Synthesis, characterisation and CO2 adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash. J CO2 Util 36:220–230
46.
Zurück zum Zitat Galindo R, López-Delgado A, Padilla I, Yates M (2015) Synthesis and characterisation of hydrotalcites produced by an aluminium hazardous waste: a comparison between the use of ammonia and the use of triethanolamine. Appl Clay Sci 115:115–123CrossRef Galindo R, López-Delgado A, Padilla I, Yates M (2015) Synthesis and characterisation of hydrotalcites produced by an aluminium hazardous waste: a comparison between the use of ammonia and the use of triethanolamine. Appl Clay Sci 115:115–123CrossRef
47.
Zurück zum Zitat Linda PL, Okanigbe DO, Popoola API, Popoola OM (2021) Characterization of density separated mullite rich tailings from a secondary copper resource, a potential reinforcement material for development of an enhanced thermally conductive and wear resistant ti-6al-4v matrix composite. In: The proceedings of the 60th international conference of metallurgist. Canada Linda PL, Okanigbe DO, Popoola API, Popoola OM (2021) Characterization of density separated mullite rich tailings from a secondary copper resource, a potential reinforcement material for development of an enhanced thermally conductive and wear resistant ti-6al-4v matrix composite. In: The proceedings of the 60th international conference of metallurgist. Canada
Metadaten
Titel
Review on Hydrotalcite-Derived Material from Waste Metal Dust, a Solid Adsorbent for CO2 Capture: Challenges and Opportunities in South African Coal-Fired Thermal Plant
verfasst von
Daniel Ogochukwu Okanigbe
Abimbola Patricia Popoola
Olawale Moshood Popoola
Prudence Mamasia Moshokwa
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-92559-8_9