Skip to main content

2021 | OriginalPaper | Buchkapitel

Risk Assessment of a Railway Bridge Subjected to a Multi-hazard Scenario

verfasst von : João Fernandes, Monica Santamaria, José C. Matos, Daniel V. Oliveira, António Abel Henriques

Erschienen in: 18th International Probabilistic Workshop

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bridges present valuable assets for the rail and road network by providing cross at critical links such as waterways, valleys, and other types of facilities. However, these types of structures are exposed to several threats during their life-cycle such as natural hazards and deterioration, which compromise their performance. To assess the condition state of such infrastructure and define maintenance and mitigation strategies, several performance indicators of quantitative nature have been proposed during the last decades by several researchers. Among those indicators, risk has received great attention as it enables to account for both the performance of infrastructures subjected to hazard events, and the consequences associated to an inadequate level of service of the infrastructure. Nevertheless, risk is not a stationary indicator, i.e. several parameters involved in the estimation of risk are time-dependent. One of them comprises the structural capacity of infrastructures, which is affected by deterioration effects over time. This gradual deterioration can be regarded as an interceptable hazard, which may act simultaneously with other non-interceptable hazards such as natural events (e.g. earthquakes). Therefore, a risk assessment framework should account for the probability of having these multiple hazards acting during the service life of infrastructures. The aim of this paper is to conduct a risk assessment for a railway bridge subjected to a multi-hazard scenario, i.e. an observable interceptable hazard corresponding to chloride induced corrosion of the reinforcing steel in reinforced concrete elements, together with seismic hazard. The results of the study demonstrate the relevance of considering time-dependent deterioration effects on the risk assessment of bridges, as the increase in the seismic fragility over time is significant. These findings are relevant for decision-making to plan and execute optimal interventions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hopkin, P. (2014). Fundamentals of risk management: Understanding, evaluating and implementing effective risk management. Kogan Page Publishers Hopkin, P. (2014). Fundamentals of risk management: Understanding, evaluating and implementing effective risk management. Kogan Page Publishers
2.
Zurück zum Zitat Faber, M. H., & Stewart, M. G. (2003). Risk assessment for civil engineering facilities: Critical overview and discussion. Reliability Engineering & System Safety, 80, 173–184.CrossRef Faber, M. H., & Stewart, M. G. (2003). Risk assessment for civil engineering facilities: Critical overview and discussion. Reliability Engineering & System Safety, 80, 173–184.CrossRef
3.
Zurück zum Zitat Ellingwood, B. R. (2005). Risk-informed condition assessment of civil infrastructure: State of practice and research issues. Structure and Infrastructure Engineering, 1, 7–18.CrossRef Ellingwood, B. R. (2005). Risk-informed condition assessment of civil infrastructure: State of practice and research issues. Structure and Infrastructure Engineering, 1, 7–18.CrossRef
4.
Zurück zum Zitat Faber, M. (2008). Risk assessment in engineering: Principles, system representation & risk criteria. JCSS Joint Committee of Structural Safety. Faber, M. (2008). Risk assessment in engineering: Principles, system representation & risk criteria. JCSS Joint Committee of Structural Safety.
5.
Zurück zum Zitat Decò, A., & Frangopol, D. M. (2011). Risk assessment of highway bridges under multiple hazards. Journal of Risk Research, 14, 1057–1089.CrossRef Decò, A., & Frangopol, D. M. (2011). Risk assessment of highway bridges under multiple hazards. Journal of Risk Research, 14, 1057–1089.CrossRef
6.
Zurück zum Zitat Decò, A., & Frangopol, D. M. (2013). Life-cycle risk assessment of spatially distributed aging bridges under seismic and traffic hazards. Earthquake Spectra, 29, 127–153.CrossRef Decò, A., & Frangopol, D. M. (2013). Life-cycle risk assessment of spatially distributed aging bridges under seismic and traffic hazards. Earthquake Spectra, 29, 127–153.CrossRef
7.
Zurück zum Zitat Saydam, D., & Frangopol, D. M. (2014). Risk-based maintenance optimization of deteriorating bridges. Journal of Structural Engineering, 141, 04014120.CrossRef Saydam, D., & Frangopol, D. M. (2014). Risk-based maintenance optimization of deteriorating bridges. Journal of Structural Engineering, 141, 04014120.CrossRef
8.
Zurück zum Zitat Saydam, D., Frangopol, D. M., & Dong, Y. (2012). Assessment of risk using bridge element condition ratings. Journal of Infrastructure Systems, 19, 252–265.CrossRef Saydam, D., Frangopol, D. M., & Dong, Y. (2012). Assessment of risk using bridge element condition ratings. Journal of Infrastructure Systems, 19, 252–265.CrossRef
9.
Zurück zum Zitat Hajdin, M. K. R., Masovic, S., Linneberg, P., & Amado, J. (2018). WG3 Technical Report—Establishment of a quality control plan. Hajdin, M. K. R., Masovic, S., Linneberg, P., & Amado, J. (2018). WG3 Technical Report—Establishment of a quality control plan.
10.
Zurück zum Zitat Ariza, M. P. S., Sousa, H. S., Fernandes, J. N. D., Matos, J. C. (2019). Reliability analysis of a post-tensioned railway bridge exposed to corrosion effects. Ariza, M. P. S., Sousa, H. S., Fernandes, J. N. D., Matos, J. C. (2019). Reliability analysis of a post-tensioned railway bridge exposed to corrosion effects.
11.
Zurück zum Zitat CEN. (2004). Eurocode 2: Design of concrete structures—Part 1-1: General rules and rules for buildings. CEN. (2004). Eurocode 2: Design of concrete structures—Part 1-1: General rules and rules for buildings.
12.
Zurück zum Zitat Dolce, M., Cardone, D., & Croatto, F. (2005). Frictional behavior of steel-PTFE interfaces for seismic isolation. Bulletin of Earthquake Engineering, 3, 75–99.CrossRef Dolce, M., Cardone, D., & Croatto, F. (2005). Frictional behavior of steel-PTFE interfaces for seismic isolation. Bulletin of Earthquake Engineering, 3, 75–99.CrossRef
13.
Zurück zum Zitat CEN. (2004). Eurocode 8. Design provisions for earthquake resistance of structures. Part 1-1: General rules—Seismic actions and general requirements for structures. Brussels: Belgium Eur Commitee Stand. CEN. (2004). Eurocode 8. Design provisions for earthquake resistance of structures. Part 1-1: General rules—Seismic actions and general requirements for structures. Brussels: Belgium Eur Commitee Stand.
14.
Zurück zum Zitat Gelfi.(2006). SIMQKE-GR—Software for generating artificial accelerograms compatible with the response spectrum. Gelfi.(2006). SIMQKE-GR—Software for generating artificial accelerograms compatible with the response spectrum.
15.
Zurück zum Zitat Moschonas, I. F., Kappos, A. J., Panetsos, P., Papadopoulos, V., Makarios, T., & Thanopoulos, P. (2009). Seismic fragility curves for Greek bridges: Methodology and case studies. Bulletin of Earthquake Engineering, 7, 439.CrossRef Moschonas, I. F., Kappos, A. J., Panetsos, P., Papadopoulos, V., Makarios, T., & Thanopoulos, P. (2009). Seismic fragility curves for Greek bridges: Methodology and case studies. Bulletin of Earthquake Engineering, 7, 439.CrossRef
16.
Zurück zum Zitat Jiang, C., Wei, B., Wang, D., Jiang, L., & He, X. (2017). Seismic vulnerability evaluation of a three-span continuous beam railway bridge. Mathematical Problems in Engineering, 2017. Jiang, C., Wei, B., Wang, D., Jiang, L., & He, X. (2017). Seismic vulnerability evaluation of a three-span continuous beam railway bridge. Mathematical Problems in Engineering, 2017.
17.
Zurück zum Zitat Baker, J. W. (2014). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31, 579–599.CrossRef Baker, J. W. (2014). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31, 579–599.CrossRef
18.
Zurück zum Zitat Choi, E., DesRoches, R., & Nielson, B. (2004). Seismic fragility of typical bridges in moderate seismic zones. Engineering structures, 26, 187–199.CrossRef Choi, E., DesRoches, R., & Nielson, B. (2004). Seismic fragility of typical bridges in moderate seismic zones. Engineering structures, 26, 187–199.CrossRef
19.
Zurück zum Zitat Choe, D.-E., Gardoni, P., Rosowsky, D., & Haukaas, T. (2008). Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion. Reliability Engineering & System Safety, 93, 383–393.CrossRef Choe, D.-E., Gardoni, P., Rosowsky, D., & Haukaas, T. (2008). Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion. Reliability Engineering & System Safety, 93, 383–393.CrossRef
20.
Zurück zum Zitat EuRam III, E. B. (2000). DuraCrete final technical report, probabilistic performance based durability design of concrete structures. Document BE95–1347. EuRam III, E. B. (2000). DuraCrete final technical report, probabilistic performance based durability design of concrete structures. Document BE95–1347.
21.
Zurück zum Zitat Almeida, J. (2013). Sistema de gestão de pontes com base em custos de ciclo de vida (translation: Life-cycle cost based bridge management systems). Universidade do Porto. Almeida, J. (2013). Sistema de gestão de pontes com base em custos de ciclo de vida (translation: Life-cycle cost based bridge management systems). Universidade do Porto.
22.
Zurück zum Zitat Minaie, E., & Moon, F. (2017). Practical and simplified approach for quantifying bridge resilience. Journal of Infrastructure Systems, 23, 04017016.CrossRef Minaie, E., & Moon, F. (2017). Practical and simplified approach for quantifying bridge resilience. Journal of Infrastructure Systems, 23, 04017016.CrossRef
Metadaten
Titel
Risk Assessment of a Railway Bridge Subjected to a Multi-hazard Scenario
verfasst von
João Fernandes
Monica Santamaria
José C. Matos
Daniel V. Oliveira
António Abel Henriques
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-73616-3_51