Skip to main content

2022 | OriginalPaper | Buchkapitel

12. Roll Model Control of Autonomous Vehicle

verfasst von : Catter Ching Nok To, Hormoz Marzbani, Reza N. Jazar

Erschienen in: Nonlinear Approaches in Engineering Application

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dynamic vehicle roll study requires incorporating ideas from both the physics and mathematics. Applying artificial intelligence (AI) driver algorithms in autonomously controlled vehicles enables them to determine and negotiate corners effectively. The relational concepts vary when comparing the value of vehicle turn angles and their combined active contribution in turning the vehicle automatically.
The planar mathematical theory model for autonomous vehicles was initially developed. This theory was developed for use with 4-wheel steering vehicles but also works for 2-wheel steering vehicles. This theory extends the roll model by using the parameters of the angular velocity of a vehicle; that is, roll φ, pitch θ, yaw ψ, roll rate p, pitch rate q and yaw rate r. However, a roll model that uses forward, lateral, yaw and roll velocities is more exact and effective compared to this planar model.
Autodriver algorithm was introduced as a path-following algorithm for autonomous vehicles which is using road geometry data and planar vehicle dynamics. An autonomous vehicle can follow a given road if it turns about its centre of curvature at a correct moving position equal to the radius of the curvature of the path. The autodriver algorithm is improved according to practical implications, while a more realistic vehicle model (roll mode) is used, which considers roll degree of freedom in addition to a planar motion. A ghost-car path-following approach is introduced to define the desired location of the car at every instance. Finally, simulations are performed to analyse the path-following performance of the proposed scheme. The results show promising performance of the controller both in terms of error minimisation and passenger comfort.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Bishop, Intelligent Vehicle Technology and Trend. Norwood, MA: Artech House, 2005. R. Bishop, Intelligent Vehicle Technology and Trend. Norwood, MA: Artech House, 2005.
2.
Zurück zum Zitat M. A. Sotelo, “Lateral control strategy for autonomous steering of Ackerman-like vehicles,” Robot. Auton. Syst., vol. 45, pp. 223–233, 2003.CrossRef M. A. Sotelo, “Lateral control strategy for autonomous steering of Ackerman-like vehicles,” Robot. Auton. Syst., vol. 45, pp. 223–233, 2003.CrossRef
3.
Zurück zum Zitat J. M. Snider, “Automatic Steering Methods for Autonomous Automobile Path Tracking,” Ph.D. dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh, 2009. J. M. Snider, “Automatic Steering Methods for Autonomous Automobile Path Tracking,” Ph.D. dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh, 2009.
4.
Zurück zum Zitat V. Milanés, J. Pérez, E. Onieva, C. González, and T. de Pedro, “Lateral power controller for unmanned vehicles,” Elect. Rev., vol. 86, pp. 207–211, 2010. V. Milanés, J. Pérez, E. Onieva, C. González, and T. de Pedro, “Lateral power controller for unmanned vehicles,” Elect. Rev., vol. 86, pp. 207–211, 2010.
5.
Zurück zum Zitat J. Pérez, V. Milanés, and E. Onieva, “Cascade architecture for lateral control in autonomous vehicles,” IEEE T. Intell. Transp. Syst., vol. 12, pp. 73-82, 2011.CrossRef J. Pérez, V. Milanés, and E. Onieva, “Cascade architecture for lateral control in autonomous vehicles,” IEEE T. Intell. Transp. Syst., vol. 12, pp. 73-82, 2011.CrossRef
6.
Zurück zum Zitat J. W. Lee and B. Litkouhi, A unified framework of the automated lane centreing/changing control for motion smoothness adaptation, presented at the International IEEE Conference on Intelligent Transportation Systems, Anchorage, Alaska, 2012. J. W. Lee and B. Litkouhi, A unified framework of the automated lane centreing/changing control for motion smoothness adaptation, presented at the International IEEE Conference on Intelligent Transportation Systems, Anchorage, Alaska, 2012.
7.
Zurück zum Zitat M. H. Lee et al., “Lateral controller design for an unmanned vehicle via kalman filtering,” Int. J. Auto. Tech., vol. 13, pp. 801–807, 2012.CrossRef M. H. Lee et al., “Lateral controller design for an unmanned vehicle via kalman filtering,” Int. J. Auto. Tech., vol. 13, pp. 801–807, 2012.CrossRef
8.
Zurück zum Zitat A. Broggi, P. Medici, E. Cardarelli, P. Cerri, and A. Giacomazzo, Development of the control system for the VisLab intercontinental autonomous challenge, presented at the International IEEE Annual Conference on Intelligent Transportation Systems, Madeira Island, 2010. A. Broggi, P. Medici, E. Cardarelli, P. Cerri, and A. Giacomazzo, Development of the control system for the VisLab intercontinental autonomous challenge, presented at the International IEEE Annual Conference on Intelligent Transportation Systems, Madeira Island, 2010.
9.
Zurück zum Zitat H. Tan and J. Huang, “Experimental development of a new target and control driver steering model based on DLC test data,” IEEE T. Intell. Transp. Syst., vol. 13, pp. 375–384, 2012.CrossRef H. Tan and J. Huang, “Experimental development of a new target and control driver steering model based on DLC test data,” IEEE T. Intell. Transp. Syst., vol. 13, pp. 375–384, 2012.CrossRef
10.
Zurück zum Zitat I. Bae, J. Hyo Kim, and S. Kim, Steering rate controller based on curvature of path for autonomous driving vehicles, presented at the IEEE Intelligent Vehicles Symposium (IV), Australia, 2013. I. Bae, J. Hyo Kim, and S. Kim, Steering rate controller based on curvature of path for autonomous driving vehicles, presented at the IEEE Intelligent Vehicles Symposium (IV), Australia, 2013.
11.
Zurück zum Zitat R. Rajamani, Lateral Vehicle Dynamics, Springer, 2006.MATH R. Rajamani, Lateral Vehicle Dynamics, Springer, 2006.MATH
12.
Zurück zum Zitat M. Elbanhawi, M. Simic, and R. N. Jazar, “Autonomous robots path planning: An adaptive roadmap approach,” Appl. Mech. Mater., vol. 373, pp. 246–254, 2013.CrossRef M. Elbanhawi, M. Simic, and R. N. Jazar, “Autonomous robots path planning: An adaptive roadmap approach,” Appl. Mech. Mater., vol. 373, pp. 246–254, 2013.CrossRef
13.
Zurück zum Zitat M. Elbanhawi, M. Simic, and R. N. Jazar, “Continuous-curvature bounded path planning using parametric splines,” FAIA, vol. 262, pp. 513–522, 2014. M. Elbanhawi, M. Simic, and R. N. Jazar, “Continuous-curvature bounded path planning using parametric splines,” FAIA, vol. 262, pp. 513–522, 2014.
14.
Zurück zum Zitat H. Marzbani, M. Simic, M. Fard, and R. N. Jazar, “Better road design for autonomous vehicles using clothoids,” IIMSS, vol. 40, pp. 265–278, 2015. H. Marzbani, M. Simic, M. Fard, and R. N. Jazar, “Better road design for autonomous vehicles using clothoids,” IIMSS, vol. 40, pp. 265–278, 2015.
15.
Zurück zum Zitat D.Q. Vo, H. Marzbani, M. Fard, and R. Jazar, “A novel kinematic model of a steerable tire for examining kingpin moment during low-speed-large-steering-angle cornering,” SAE Int. J. Passeng. Cars Mech. Syst., vol. 10, 2016. D.Q. Vo, H. Marzbani, M. Fard, and R. Jazar, “A novel kinematic model of a steerable tire for examining kingpin moment during low-speed-large-steering-angle cornering,” SAE Int. J. Passeng. Cars Mech. Syst., vol. 10, 2016.
16.
Zurück zum Zitat D.Q. Vo, H. Marzbani, M. Fard, and R. Jazar, “Variable caster steering in vehicle dynamics,” in Proc. Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017. D.Q. Vo, H. Marzbani, M. Fard, and R. Jazar, “Variable caster steering in vehicle dynamics,” in Proc. Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017.
17.
Zurück zum Zitat M. Guiggiani, The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars, Springer, 2014.CrossRef M. Guiggiani, The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars, Springer, 2014.CrossRef
18.
Zurück zum Zitat C. Fu, R. Hoseinnezhad, A. Bab-Hadiashar, and G. Nakhaie Jazar, “Electric vehicle side-slip control via electronic differential,” Int. J. Veh. Auton. Syst., vol. 6, pp. 108–132, 2014. C. Fu, R. Hoseinnezhad, A. Bab-Hadiashar, and G. Nakhaie Jazar, “Electric vehicle side-slip control via electronic differential,” Int. J. Veh. Auton. Syst., vol. 6, pp. 108–132, 2014.
19.
Zurück zum Zitat H. Marzbani, M. H. A. Salahuddin, M. Simic, M. Fard, and R. N. Jazar, “Steady-state dynamic steering,” FAIA, vol. 262, pp. 493–504, 2014. H. Marzbani, M. H. A. Salahuddin, M. Simic, M. Fard, and R. N. Jazar, “Steady-state dynamic steering,” FAIA, vol. 262, pp. 493–504, 2014.
20.
Zurück zum Zitat P. K. Agarwal and H. Wang, “Approximation algorithms for curvature-constrained shortest paths,” SIAM J. Comput., vol. 30, pp. 1739–1772, 1996.MathSciNetCrossRef P. K. Agarwal and H. Wang, “Approximation algorithms for curvature-constrained shortest paths,” SIAM J. Comput., vol. 30, pp. 1739–1772, 1996.MathSciNetCrossRef
21.
Zurück zum Zitat H. Marzbani, D. Q. Vo, A. Khazaei, M. Fard, and R. N. Jazar, “Transient and steady-state rotation centre of vehicle dynamics,” IJNDC, vol. 1, pp. 97–113, 2017.CrossRef H. Marzbani, D. Q. Vo, A. Khazaei, M. Fard, and R. N. Jazar, “Transient and steady-state rotation centre of vehicle dynamics,” IJNDC, vol. 1, pp. 97–113, 2017.CrossRef
22.
Zurück zum Zitat A. Lari, F. Douma, and I. Onyiah, “Self-driving vehicles and policy implications: Current status of autonomous vehicle development and Minnesota policy implications,” Minn. J. L. Sci. & Tech., vol. 16, 2015. A. Lari, F. Douma, and I. Onyiah, “Self-driving vehicles and policy implications: Current status of autonomous vehicle development and Minnesota policy implications,” Minn. J. L. Sci. & Tech., vol. 16, 2015.
23.
Zurück zum Zitat H. Khayyam, A. Z. Kouzani, E. J. Hu, and S. Nahavandi, “Coordinated energy management of vehicle air conditioning system,” Appl. Therm. Eng., vol. 31, pp. 750–764, 2011.CrossRef H. Khayyam, A. Z. Kouzani, E. J. Hu, and S. Nahavandi, “Coordinated energy management of vehicle air conditioning system,” Appl. Therm. Eng., vol. 31, pp. 750–764, 2011.CrossRef
24.
Zurück zum Zitat S. Song, W. Cai, and Y-G. Wang, “Auto-tuning of cascade control systems,” ISA Trans., vol. 42, pp. 63–72, 2003. S. Song, W. Cai, and Y-G. Wang, “Auto-tuning of cascade control systems,” ISA Trans., vol. 42, pp. 63–72, 2003.
25.
Zurück zum Zitat R. N. Jazar, “Mathematical theory of autodriver for autonomous vehicles,” J. Vib. Control, vol. 16, pp. 253–279, 2010.MathSciNetCrossRef R. N. Jazar, “Mathematical theory of autodriver for autonomous vehicles,” J. Vib. Control, vol. 16, pp. 253–279, 2010.MathSciNetCrossRef
26.
Zurück zum Zitat H. Marzbani, “Application of the mathematical autodriver algorithm for autonomous vehicles,” Ph.D dissertation, Engineering, RMIT University, Melbourne, Australia, 2014. H. Marzbani, “Application of the mathematical autodriver algorithm for autonomous vehicles,” Ph.D dissertation, Engineering, RMIT University, Melbourne, Australia, 2014.
27.
Zurück zum Zitat A. Bourmistrova, M. Simic, R. Hoseinnezhad, and R. N. Jazar, “Autodriver algorithm,” J. Syst., Cyber. Inform., vol. 9, pp. 55–56, 2011. A. Bourmistrova, M. Simic, R. Hoseinnezhad, and R. N. Jazar, “Autodriver algorithm,” J. Syst., Cyber. Inform., vol. 9, pp. 55–56, 2011.
28.
Zurück zum Zitat H. Khayyam, A. Kouzani, H. Hamid Abdi, and S. Nahavandi, “Modeling of Highway Heights for Vehicle Modeling and Simulation,” in ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009, pp. 365–369. H. Khayyam, A. Kouzani, H. Hamid Abdi, and S. Nahavandi, “Modeling of Highway Heights for Vehicle Modeling and Simulation,” in ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009, pp. 365–369.
29.
Zurück zum Zitat H. Khayyam, “Stochastic models of road geometry and wind condition for vehicle energy management and control,” IEEE Trans. Vehic. Tech., vol. 62, pp. 61–68, 2012.CrossRef H. Khayyam, “Stochastic models of road geometry and wind condition for vehicle energy management and control,” IEEE Trans. Vehic. Tech., vol. 62, pp. 61–68, 2012.CrossRef
30.
Zurück zum Zitat R. N. Jazar, Advanced Dynamics: Rigid Body, Multibody, and Aerospace Applications, New York: Wiley, 2011.CrossRef R. N. Jazar, Advanced Dynamics: Rigid Body, Multibody, and Aerospace Applications, New York: Wiley, 2011.CrossRef
31.
Zurück zum Zitat H. Marzbani, S. Harithuddin, M. Simic, M. Fard, and R. N. Jazar, “Four wheel steering advantageous for the Autodriver algorithm,” FAIA, vol. 262, pp. 505–512, 2014. H. Marzbani, S. Harithuddin, M. Simic, M. Fard, and R. N. Jazar, “Four wheel steering advantageous for the Autodriver algorithm,” FAIA, vol. 262, pp. 505–512, 2014.
32.
Zurück zum Zitat R. N. Jazar, Vehicle Dynamics: Theory and Application. New York: Springer, 2018. R. N. Jazar, Vehicle Dynamics: Theory and Application. New York: Springer, 2018.
33.
Zurück zum Zitat J. M. S. Ribeiro, M. F. Santos, M. J. Carmo, and M. F. Silva, “Comparison of PID controller tuning methods: Analytical/classical techniques versus optimization algorithms” in 18th International Carpathian Control Conference, pp. 533–538, 2017. J. M. S. Ribeiro, M. F. Santos, M. J. Carmo, and M. F. Silva, “Comparison of PID controller tuning methods: Analytical/classical techniques versus optimization algorithms” in 18th International Carpathian Control Conference, pp. 533–538, 2017.
Metadaten
Titel
Roll Model Control of Autonomous Vehicle
verfasst von
Catter Ching Nok To
Hormoz Marzbani
Reza N. Jazar
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-82719-9_12

Neuer Inhalt