Skip to main content

2018 | OriginalPaper | Buchkapitel

Second Law Analysis of an Experimental Micro Turbojet Engine

verfasst von : Coban Kahraman, Sohret Yasin, Colpan C. Ozgur, Karakoc T. Hikmet

Erschienen in: Exergy for A Better Environment and Improved Sustainability 1

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mini class gas turbine engines are today used for small UAVs, cogeneration applications, and hybrid electric vehicle applications. In this paper, exergetic assessment of an indigenous mini class gas turbine engine is investigated. This engine is classified as mini class gas turbine where it differs from similar class engines in two ways, including closed loop lubrication system and bearing damping. A great amount of bench testing studies with required extensive instrumentation were also performed to demonstrate the suitability of this technology. Consequently, an approach in order to evaluate test data parameters for the exergetic performance is presented for mini class gas turbine engines used for small experimental planes and small-scale UAVs by applying the energy and exergy analyses to the engine. Hence, exergetic efficiency, improvement potentials, exergy destruction rates, relative exergy destructions, fuel depletion ratios, productivity lacks, and fuel and product exergy factors are calculated for the engine taking into account only dry air. This study shows that main exergy destruction for a typical gas turbine occurs in the combustion chamber. Exergetic efficiencies for centrifugal compressor, combustion chamber, and high-pressure turbine are found to be as 74.04%, 56.06%, and 98.98%, respectively. Finally, it was flight tested several times on small-scale UAVs and small experimental aircrafts with success.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Atilgan, R., Turan, O., Altuntas, O., Aydin, H., Synylo, K.: Environmental impact assessment of a turboprop engine with the aid of exergy. Energy. 58, 664–671 (2013)CrossRef Atilgan, R., Turan, O., Altuntas, O., Aydin, H., Synylo, K.: Environmental impact assessment of a turboprop engine with the aid of exergy. Energy. 58, 664–671 (2013)CrossRef
Zurück zum Zitat Aydin, H.: Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle. Energy. 57, 766–774 (2013)CrossRef Aydin, H.: Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle. Energy. 57, 766–774 (2013)CrossRef
Zurück zum Zitat Aydin, H., Turan, O., Karakoc, T.H., Midilli, A.: Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight. Energy. 58, 550–560 (2013)CrossRef Aydin, H., Turan, O., Karakoc, T.H., Midilli, A.: Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight. Energy. 58, 550–560 (2013)CrossRef
Zurück zum Zitat Balli, O., Hepbasli, A.: Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy. 64, 582–600 (2013)CrossRef Balli, O., Hepbasli, A.: Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy. 64, 582–600 (2013)CrossRef
Zurück zum Zitat Bang-Møller, C., Rokni, M., Elmegaard, B.: Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system. Energy. 36, 4740–4752 (2011)CrossRef Bang-Møller, C., Rokni, M., Elmegaard, B.: Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system. Energy. 36, 4740–4752 (2011)CrossRef
Zurück zum Zitat Bejan, A., Siems, D.L.: The need for exergy analysis and thermodynamic optimization in aircraft development, exergy. An Int. J. 1, 14–24 (2001) Bejan, A., Siems, D.L.: The need for exergy analysis and thermodynamic optimization in aircraft development, exergy. An Int. J. 1, 14–24 (2001)
Zurück zum Zitat Bejan, A., Tsatsaronis, G., Moran, M.: Thermal Design and Optimization. Wiley, New York (1995)MATH Bejan, A., Tsatsaronis, G., Moran, M.: Thermal Design and Optimization. Wiley, New York (1995)MATH
Zurück zum Zitat Cengel, Y.A., Boles, M.: Thermodynamics: An Engineering Approach 5th Edition. McGraw-Hill Higher Education, (2006) Cengel, Y.A., Boles, M.: Thermodynamics: An Engineering Approach 5th Edition. McGraw-Hill Higher Education, (2006)
Zurück zum Zitat Cengel, Y.A., Wood, B., Dincer, I.: Is bigger thermodynamically better? Exergy Int. J. 2, 62–68 (2002)CrossRef Cengel, Y.A., Wood, B., Dincer, I.: Is bigger thermodynamically better? Exergy Int. J. 2, 62–68 (2002)CrossRef
Zurück zum Zitat Dincer, I., Hussain, M.M., Al-Zaharnah, I.: Energy and exergy utilization in transportation sector of Saudi Arabia. Appl. Therm. Eng. 24, 525–538 (2004) Dincer, I., Hussain, M.M., Al-Zaharnah, I.: Energy and exergy utilization in transportation sector of Saudi Arabia. Appl. Therm. Eng. 24, 525–538 (2004)
Zurück zum Zitat Clay, A., Tansley, G.D.: Exploration of a simple, low cost, micro gas turbine recuperator solution for a domestic combined heat and power unit. Appl. Therm. Eng. 31, 2676–2684 (2011)CrossRef Clay, A., Tansley, G.D.: Exploration of a simple, low cost, micro gas turbine recuperator solution for a domestic combined heat and power unit. Appl. Therm. Eng. 31, 2676–2684 (2011)CrossRef
Zurück zum Zitat Dincer, I., Rosen, M.A.: Exergy, Energy, Environment and Sustainable Development 2nd Edition. Elsevier Ltd., Oxford OX5 1GB, UK (2013) Dincer, I., Rosen, M.A.: Exergy, Energy, Environment and Sustainable Development 2nd Edition. Elsevier Ltd., Oxford OX5 1GB, UK (2013)
Zurück zum Zitat Ehyaei, M.A., Anjiridezfuli, A., Rosen, M.A.: Exergetic analysis of an aircraft turbojet engine with an afterburner. Therm. Sci. 17, 1181–1194 (2013)CrossRef Ehyaei, M.A., Anjiridezfuli, A., Rosen, M.A.: Exergetic analysis of an aircraft turbojet engine with an afterburner. Therm. Sci. 17, 1181–1194 (2013)CrossRef
Zurück zum Zitat Gandolfi, R., Pellegrini, L.F., Silva, G., Oliveira, S.: Exergy analysis applied to a complete flight mission of commercial aircraft, 46th AIAA Aerospace Science Meeting and Exhibit Proceedings, (2008) Gandolfi, R., Pellegrini, L.F., Silva, G., Oliveira, S.: Exergy analysis applied to a complete flight mission of commercial aircraft, 46th AIAA Aerospace Science Meeting and Exhibit Proceedings, (2008)
Zurück zum Zitat Hammond, A., Stapleton, J.: Exergy analysis of the United Kingdom energy system. Proc. Inst. Mech. Eng. 215(2), 141–162 (2001)CrossRef Hammond, A., Stapleton, J.: Exergy analysis of the United Kingdom energy system. Proc. Inst. Mech. Eng. 215(2), 141–162 (2001)CrossRef
Zurück zum Zitat Hassan, H.Z.: Evaluation of the local exergy destruction in the intake and fan of a turbofan engine. Energy. 63, 245–251 (2013)CrossRef Hassan, H.Z.: Evaluation of the local exergy destruction in the intake and fan of a turbofan engine. Energy. 63, 245–251 (2013)CrossRef
Zurück zum Zitat Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988) Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)
Zurück zum Zitat Moya, M., Bruno, J.C., Eguia, P., Torres, E., Zamora, I., Coronas, A.: Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia-water absorption chiller. Appl. Energy. 88, 4424–4440 (2011)CrossRef Moya, M., Bruno, J.C., Eguia, P., Torres, E., Zamora, I., Coronas, A.: Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia-water absorption chiller. Appl. Energy. 88, 4424–4440 (2011)CrossRef
Zurück zum Zitat Nikpey, H., Assadi, M., Breuhaus, P., Mørkved, P.T.: Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas. Appl. Energy. 117, 30–41 (2014)CrossRef Nikpey, H., Assadi, M., Breuhaus, P., Mørkved, P.T.: Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas. Appl. Energy. 117, 30–41 (2014)CrossRef
Zurück zum Zitat Rosen, M.A., Etele, J.: Aerospace systems and exergy analysis: applications and methodology development needs. Int. J. Exergy. 1, 411–425 (2004)CrossRef Rosen, M.A., Etele, J.: Aerospace systems and exergy analysis: applications and methodology development needs. Int. J. Exergy. 1, 411–425 (2004)CrossRef
Zurück zum Zitat Szargut, J., Morris, D.R., Steward, F.R.: Exergy analysis of thermal, chemical, and metallurgical processes, Hemisphere Publ. Corp., New York, USA (1988) Szargut, J., Morris, D.R., Steward, F.R.: Exergy analysis of thermal, chemical, and metallurgical processes, Hemisphere Publ. Corp., New York, USA (1988)
Zurück zum Zitat Tona, C., Antonio, P., Pellegrini, L.F., de Oliveira Jr, S.: Exergy and thermoeconomic analysis of a turbofan engine during a typical commercial flight. Energy. 35, 952–959 (2010)CrossRef Tona, C., Antonio, P., Pellegrini, L.F., de Oliveira Jr, S.: Exergy and thermoeconomic analysis of a turbofan engine during a typical commercial flight. Energy. 35, 952–959 (2010)CrossRef
Zurück zum Zitat Turan, O.: Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications. Energy. 46, 51–61 (2012)CrossRef Turan, O.: Exergetic effects of some design parameters on the small turbojet engine for unmanned air vehicle applications. Energy. 46, 51–61 (2012)CrossRef
Zurück zum Zitat Turgut, E., Karakoc, T.H., Hepbasli, A.: Exergetic analysis of an aircraft turbofan engine. Int. J. Energy Res. 31, 1383–1397 (2007)CrossRef Turgut, E., Karakoc, T.H., Hepbasli, A.: Exergetic analysis of an aircraft turbofan engine. Int. J. Energy Res. 31, 1383–1397 (2007)CrossRef
Zurück zum Zitat Wenjuan, C., Wei, F., Hua, Q., Hongqiang, Q., Chuanjun, Y.: Thermodynamic performance analysis of turbofan engine with a pulse detonation duct heater. Aerosp. Sci. Technol. 23, 206–212 (2012)CrossRef Wenjuan, C., Wei, F., Hua, Q., Hongqiang, Q., Chuanjun, Y.: Thermodynamic performance analysis of turbofan engine with a pulse detonation duct heater. Aerosp. Sci. Technol. 23, 206–212 (2012)CrossRef
Metadaten
Titel
Second Law Analysis of an Experimental Micro Turbojet Engine
verfasst von
Coban Kahraman
Sohret Yasin
Colpan C. Ozgur
Karakoc T. Hikmet
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-62572-0_48