Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.08.2019 | Original Article | Ausgabe 11/2019

International Journal of Machine Learning and Cybernetics 11/2019

SegFast-V2: Semantic image segmentation with less parameters in deep learning for autonomous driving

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 11/2019
Autoren:
Swarnendu Ghosh, Anisha Pal, Shourya Jaiswal, K. C. Santosh, Nibaran Das, Mita Nasipuri
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Semantic image segmentation can be used in various driving applications, such as automatic braking, road sign alerts, park assists, and pedestrian warnings. More often, AI applications, such as autonomous modules are available in expensive vehicles. It would be appreciated if such facilities can be made available in the lower end of the price spectrum. Existing methodologies, come with a costly overhead with large number of parameters and need of costly hardware. Within this scope, the key contribution of this work is to promote the possibility of compact semantic image segmentation so that it can be extended to deploy AI based solutions to less expensive vehicles. While developing cheap and fast models one must also not compromise the factor of reliability and robustness. The proposed work is primarily based on our previous model named “SegFast”, and is aimed to perform thorough analysis across a multitude of datasets. Beside “spark” modules and depth-wise separable transposed convolutions, kernel factorization is implemented to further reduce the number of parameters. The effect of MobileNet as an encoder to our model has also been analyzed. The proposed method shows a promising decrease in the number of parameters and significant gain in terms of runtime even on a single CPU environment. Despite all those speedups, the proposed approach performs at a similar level to many popular but heavier networks, such as SegNet, UNet, PSPNet, and FCN.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2019

International Journal of Machine Learning and Cybernetics 11/2019 Zur Ausgabe