Skip to main content

2017 | OriginalPaper | Buchkapitel

Seismic Analysis of Structural Systems Subjected to Fully Non-stationary Artificial Accelerograms

verfasst von : Giuseppe Muscolino, Tiziana Alderucci

Erschienen in: Computational Methods in Earthquake Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In seismic engineering, the earthquake-induced ground motion is generally represented in the form of pseudo-acceleration or displacement response spectra. There are, however, situations in which the response spectrum is not considered appropriate, and a fully dynamic analysis is required. In this case, the most effective approach is to define artificial spectrum-compatible stationary accelerograms, which are generated to match the target elastic response spectrum. So a Power Spectral Density (PSD) function is derived from the response spectrum. However, the above approach possesses the drawback that the artificial accelerograms do not manifest the variability in time and in frequency observed from the analysis of real earthquakes. Indeed, the recorded accelerograms can be considered sample of a fully non-stationary process. In this study a procedure based on the analysis of a set of accelerograms recorded in a chosen site to take into account their time and frequency variability is described. In particular the generation of artificial fully non-stationary accelerograms is performed in three steps. In the first step the spectrum-compatible PSD function, in the hypothesis of stationary excitations, is derived. In the second step the spectrum-compatible Evolutionary Power Spectral Density (EPSD) function is obtained by an iterative procedure to improve the match with the target response spectrum starting from the PSD function, once a time-frequency modulating function is chosen. In the third step the artificial accelerograms are generated by the well-known Shinozuka and Jan (J Sound Vib 25:111–128, 1972) formula and deterministic analyses can be performed to evaluate the structural response. Once the EPSD spectrum-compatible function is derived, a method recently proposed by the authors (Muscolino and Alderucci in Probab Eng Mech 40:75–89, 2015), is adopted to evaluate the EPSD response function of linear structural systems subjected to fully non-stationary excitations by very handy explicit closed-form.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chopra AK (1995) Dynamics of structures—theory and applications to earthquake engineering. Prentice Hall, Upper Saddle River, N.J, USAMATH Chopra AK (1995) Dynamics of structures—theory and applications to earthquake engineering. Prentice Hall, Upper Saddle River, N.J, USAMATH
2.
Zurück zum Zitat Bommer JJ, Acevedo AB (2004) The use of real earthquake accelerograms as input to dynamic analysis. J Earthquake Eng 8:43–91 Bommer JJ, Acevedo AB (2004) The use of real earthquake accelerograms as input to dynamic analysis. J Earthquake Eng 8:43–91
3.
Zurück zum Zitat Lam N, Wilson J, Hutchinson G (2000) Generation of synthetic earthquake accelerograms using seismological modelling: a review. J Earthq Eng 4:321–354 Lam N, Wilson J, Hutchinson G (2000) Generation of synthetic earthquake accelerograms using seismological modelling: a review. J Earthq Eng 4:321–354
4.
Zurück zum Zitat Rezaeian S, Der Kiureghian A (2010) Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthq Eng Struct Dyn 39:1155–1180 Rezaeian S, Der Kiureghian A (2010) Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthq Eng Struct Dyn 39:1155–1180
5.
Zurück zum Zitat Iervolino I, Galasso C, Cosenza E (2010) REXEL: computer aided record selection for code-based seismic structural analysis. Bull Earthq Eng 8:339–362CrossRef Iervolino I, Galasso C, Cosenza E (2010) REXEL: computer aided record selection for code-based seismic structural analysis. Bull Earthq Eng 8:339–362CrossRef
6.
Zurück zum Zitat Katsanos EI, Sextos AG, Manolis GD (2010) Selection of earthquake ground motion records: a state-of-the-art review from a structural engineering perspective. Soil Dyn Earthq Eng 30:157–169CrossRef Katsanos EI, Sextos AG, Manolis GD (2010) Selection of earthquake ground motion records: a state-of-the-art review from a structural engineering perspective. Soil Dyn Earthq Eng 30:157–169CrossRef
7.
Zurück zum Zitat Vanmarcke EH, Gasparini DA (1977) Simulated earthquake ground motions. In: Proceedings of the 4th international conference on Smirt, K1/9 San Francisco Vanmarcke EH, Gasparini DA (1977) Simulated earthquake ground motions. In: Proceedings of the 4th international conference on Smirt, K1/9 San Francisco
8.
Zurück zum Zitat Kaul MJ (1978) Stochastic characterization of earthquakes through their response spectrum. Earthq Eng Struct Dyn 6:497–509CrossRef Kaul MJ (1978) Stochastic characterization of earthquakes through their response spectrum. Earthq Eng Struct Dyn 6:497–509CrossRef
9.
Zurück zum Zitat Pfaffinger DD (1983) Calculation of power spectra from response spectra. J Eng Mechan (ASCE) 109:357–372CrossRef Pfaffinger DD (1983) Calculation of power spectra from response spectra. J Eng Mechan (ASCE) 109:357–372CrossRef
10.
Zurück zum Zitat Preumont A (1984) The generation of spectrum compatible accelerograms for the design of nuclear power plants. Earthq Eng Struct Dyn 12:481–497CrossRef Preumont A (1984) The generation of spectrum compatible accelerograms for the design of nuclear power plants. Earthq Eng Struct Dyn 12:481–497CrossRef
11.
Zurück zum Zitat Cacciola P, Colajanni P, Muscolino G (2004) Combination of modal responses consistent with seismic input representation. J Struct Eng (ASCE) 130:47–55CrossRef Cacciola P, Colajanni P, Muscolino G (2004) Combination of modal responses consistent with seismic input representation. J Struct Eng (ASCE) 130:47–55CrossRef
12.
Zurück zum Zitat Wang J, Fan L, Qian S, Zhou J (2005) Simulations of non-stationary frequency content and its importance to seismic assessment of structures. Earthq Eng Struct Dyn 31:993–1005CrossRef Wang J, Fan L, Qian S, Zhou J (2005) Simulations of non-stationary frequency content and its importance to seismic assessment of structures. Earthq Eng Struct Dyn 31:993–1005CrossRef
13.
Zurück zum Zitat Priestley MB (1965) Evolutionary spectra and non-stationary processes. J R Stat Soc Ser B (Methodol) 27:204–237MathSciNetMATH Priestley MB (1965) Evolutionary spectra and non-stationary processes. J R Stat Soc Ser B (Methodol) 27:204–237MathSciNetMATH
14.
Zurück zum Zitat Preumont A (1985) The generation of nonseparable artificial earthquake accelerograms for the design of nuclear power plants. Nucl Eng Des 88:59–67CrossRef Preumont A (1985) The generation of nonseparable artificial earthquake accelerograms for the design of nuclear power plants. Nucl Eng Des 88:59–67CrossRef
15.
Zurück zum Zitat Cacciola P (2010) A stochastic approach for generating spectrum-compatible fully nonstationary earthquakes. Comput Struct 88:889–901CrossRef Cacciola P (2010) A stochastic approach for generating spectrum-compatible fully nonstationary earthquakes. Comput Struct 88:889–901CrossRef
16.
Zurück zum Zitat Cacciola P, Zentner I (2012) Generation of response spectrum-compatible artificial earthquake accelerograms with random joint time frequency distributions. Probab Eng Mech 28:52–58CrossRef Cacciola P, Zentner I (2012) Generation of response spectrum-compatible artificial earthquake accelerograms with random joint time frequency distributions. Probab Eng Mech 28:52–58CrossRef
17.
Zurück zum Zitat Cacciola P, D’Amico L, Zentner I (2014) New insights in the analysis of the structural response to response spectrum-compatible accelerograms. Eng Struct 78:3–16CrossRef Cacciola P, D’Amico L, Zentner I (2014) New insights in the analysis of the structural response to response spectrum-compatible accelerograms. Eng Struct 78:3–16CrossRef
18.
Zurück zum Zitat Spanos PD, Failla G (2004) Evolutionary spectra estimation using wavelets. J Eng Mechan (ASCE) 130:952–960CrossRef Spanos PD, Failla G (2004) Evolutionary spectra estimation using wavelets. J Eng Mechan (ASCE) 130:952–960CrossRef
19.
Zurück zum Zitat Spanos PD, Tezcan J, Tratskas P (2005) Stochastic processes evolutionary spectrum estimation via harmonic wavelets. Comput Methods Appl Mech Eng 194:1367–1383MathSciNetCrossRefMATH Spanos PD, Tezcan J, Tratskas P (2005) Stochastic processes evolutionary spectrum estimation via harmonic wavelets. Comput Methods Appl Mech Eng 194:1367–1383MathSciNetCrossRefMATH
20.
Zurück zum Zitat Mallat SG (2009) A wavelet tour of signal processing: the sparse way. 3rd ed. Academic Press Mallat SG (2009) A wavelet tour of signal processing: the sparse way. 3rd ed. Academic Press
21.
Zurück zum Zitat Suàrez LE, Montejo LA (2005) Generation of artificial earthquakes via the wavelet transform. Int J Solids Struct 42:5905–5919CrossRefMATH Suàrez LE, Montejo LA (2005) Generation of artificial earthquakes via the wavelet transform. Int J Solids Struct 42:5905–5919CrossRefMATH
22.
Zurück zum Zitat Mukherjee S, Gupta VK (2002) Wavelet-based generation of spectrum-compatible time-histories. Soil Dyn Earthq Eng 22:799–804CrossRef Mukherjee S, Gupta VK (2002) Wavelet-based generation of spectrum-compatible time-histories. Soil Dyn Earthq Eng 22:799–804CrossRef
23.
Zurück zum Zitat Giaralis A, Spanos PD (2009) Wavelet-based response spectrum compatible synthesis of accelerograms—Eurocode application (EC8). Soil Dyn Earthq Eng 29:219–235CrossRef Giaralis A, Spanos PD (2009) Wavelet-based response spectrum compatible synthesis of accelerograms—Eurocode application (EC8). Soil Dyn Earthq Eng 29:219–235CrossRef
24.
Zurück zum Zitat Cecini D, Palmeri A (2015) Spectrum-compatible accelerograms with harmonic wavelet. Comput Struct 147:26–35CrossRef Cecini D, Palmeri A (2015) Spectrum-compatible accelerograms with harmonic wavelet. Comput Struct 147:26–35CrossRef
25.
Zurück zum Zitat Shinozuka M, Jan C-M (1972) Digital simulation of random processes and its application. J Sound Vib 25:111–128CrossRef Shinozuka M, Jan C-M (1972) Digital simulation of random processes and its application. J Sound Vib 25:111–128CrossRef
26.
Zurück zum Zitat Muscolino G, Alderucci T (2015) Closed-form solutions for the evolutionary frequency response function of linear systems subjected to separable or non-separable non-stationary stochastic excitations. Probab Eng Mech 40:75–89CrossRef Muscolino G, Alderucci T (2015) Closed-form solutions for the evolutionary frequency response function of linear systems subjected to separable or non-separable non-stationary stochastic excitations. Probab Eng Mech 40:75–89CrossRef
27.
Zurück zum Zitat Priestley MB (1967) Power spectral analysis of non-stationary random processes. J Sound Vib 6:86–97CrossRef Priestley MB (1967) Power spectral analysis of non-stationary random processes. J Sound Vib 6:86–97CrossRef
28.
Zurück zum Zitat Michaelov G, Sarkani S, Lutes LD (1999) Spectral Characteristics of Nonstationary Random Processes – A Critical Review. Struct Saf 21:223–244CrossRef Michaelov G, Sarkani S, Lutes LD (1999) Spectral Characteristics of Nonstationary Random Processes – A Critical Review. Struct Saf 21:223–244CrossRef
29.
Zurück zum Zitat Di Paola M, Petrucci G (1990) Spectral moments and pre-envelope covariances of nonseparable processes. J Appl Mechan (ASME) 57:218–224MathSciNetCrossRefMATH Di Paola M, Petrucci G (1990) Spectral moments and pre-envelope covariances of nonseparable processes. J Appl Mechan (ASME) 57:218–224MathSciNetCrossRefMATH
30.
31.
Zurück zum Zitat Di Paola M, Muscolino G (1988) Analytic evaluation of spectral moments. J Sound Vib 124:479–488CrossRef Di Paola M, Muscolino G (1988) Analytic evaluation of spectral moments. J Sound Vib 124:479–488CrossRef
32.
Zurück zum Zitat Vanmarcke EH (1972) Properties of spectral moments with applications to random vibrations. J Eng Mechan (ASCE) 98:425–446 Vanmarcke EH (1972) Properties of spectral moments with applications to random vibrations. J Eng Mechan (ASCE) 98:425–446
33.
Zurück zum Zitat Spanos P, Solomos GP (1983) Markov approximation to transient vibration. J Eng Mechan (ASCE) 109:1134–1150CrossRef Spanos P, Solomos GP (1983) Markov approximation to transient vibration. J Eng Mechan (ASCE) 109:1134–1150CrossRef
34.
Zurück zum Zitat Jennings PC, Housner GW, Tsai C (1969) Simulated earthquake motions for design purpose. In: Proceedings of 4th world conference on earthquake engineering, Santiago, A-1, pp 145–160 Jennings PC, Housner GW, Tsai C (1969) Simulated earthquake motions for design purpose. In: Proceedings of 4th world conference on earthquake engineering, Santiago, A-1, pp 145–160
35.
Zurück zum Zitat Eurocode 8 (2003) European committee for standardization: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. Brussels, Belgium Eurocode 8 (2003) European committee for standardization: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. Brussels, Belgium
36.
Zurück zum Zitat Borino G, Muscolino G (1986) Mode-superposition methods in dynamic analysis of classically and non-classically damped linear systems. Earthquake Eng Struct Dynam 14:705–717CrossRef Borino G, Muscolino G (1986) Mode-superposition methods in dynamic analysis of classically and non-classically damped linear systems. Earthquake Eng Struct Dynam 14:705–717CrossRef
37.
Zurück zum Zitat Lutes LD, Sarkani S (1997) Stochastic analysis of structural and mechanical vibrations. Prentice-Hall, Upper Saddle River Lutes LD, Sarkani S (1997) Stochastic analysis of structural and mechanical vibrations. Prentice-Hall, Upper Saddle River
38.
Zurück zum Zitat Muscolino G (1996) Dynamically modified linear structures: deterministic and stochastic response. J Eng Mechan (ASCE) 122:1044–1051CrossRef Muscolino G (1996) Dynamically modified linear structures: deterministic and stochastic response. J Eng Mechan (ASCE) 122:1044–1051CrossRef
Metadaten
Titel
Seismic Analysis of Structural Systems Subjected to Fully Non-stationary Artificial Accelerograms
verfasst von
Giuseppe Muscolino
Tiziana Alderucci
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47798-5_4