Skip to main content

2023 | OriginalPaper | Buchkapitel

8. Selection of Phase-Change Material for Building Envelope by Qualitative Decision-Support Analysis

verfasst von : F. Balo, L. S. Sua

Erschienen in: Responsible Engineering and Living

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The characteristic structure materials are frequently classified jointly in the course of many construction design steps to form what is known as the building envelope. The selection of proper building and insulation materials is one of the most significant responsibilities in the building project’s design improvement step. This determination will have a substantial effect on the building’s efficiency in terms of numerous design attributes. Finding trade-offs that satisfy a variety of efficiency criteria can help improving energy efficiency of the building design. Correct judgments are critical for optimizing building performance in terms of many performance characteristics such as thermal condictivity, density, specific mass, and so on. Although the final result cannot be completely seperated from the remaining project steps, using decision making procedures can help making this a more sensible conclusion. With this aim, MCDM approaches are commonly used for the efficient building envelope material choice. The analytic hierarchy process has been utilized to identify and evaluate proper phase-change materials for comfort applications in buildings. The temperature of phase-change for phase-change materials utilized in this system is from 21 to 28 °C. Five criteria were used in this analysis: latent thermal capacity, temperature of phase-change, solid-phase density, material thermal conductivity, and specific thermal capacity. A variety of phase-change materials can be used for comfort purposes based on certain criteria. The goal of this research is to select the best phase-change material for building envelope applications utilizing the AHP methodology. This method involves determining the evaluation criteria and comparatively evaluating pairs of criteria to find the relative importance of each criterion. Consequently, each phase-change material is evaluated for their performance based on each of these criteria and assigned a total score to determing the optimum material. The aim is to obtain the most efficient phase-change material for building envelope by determining the weights of convenient phase-change materials to insulate the building external walls using only the phase-change materials’ technical requirements and criteria.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Li, Z. Ding, M. Shakerin, N. Zhang, A multi-objective optimal design method for thermal energy storage systems with PCM: a case study for outdoor swimming pool heating application, J. Energy Storage 29 (2020) Y. Li, Z. Ding, M. Shakerin, N. Zhang, A multi-objective optimal design method for thermal energy storage systems with PCM: a case study for outdoor swimming pool heating application, J. Energy Storage 29 (2020)
2.
Zurück zum Zitat A. Waqas, Z. Ud Din, Phase-change material (PCM) storage for free cooling of buildings—a review, Renewable Sustainable Energy Rev. 18, 607–625 (2013) A. Waqas, Z. Ud Din, Phase-change material (PCM) storage for free cooling of buildings—a review, Renewable Sustainable Energy Rev. 18, 607–625 (2013)
3.
Zurück zum Zitat Y. Du, B. Blocken, S. Pirker, A novel approach to simulate pollutant dispersion in the built environment: transport-based recurrence CFD, Build. Environ. 170 (2020) Y. Du, B. Blocken, S. Pirker, A novel approach to simulate pollutant dispersion in the built environment: transport-based recurrence CFD, Build. Environ. 170 (2020)
4.
Zurück zum Zitat R. Agathokleous, G. Barone, A. Buonomano, C. Forzano, S.A. Kalogirou, A. Palombo, Building façade integrated solar thermal collectors for air heating: experimentation, modelling and applications. Appl. Energy 239, 658–679 (2019)CrossRef R. Agathokleous, G. Barone, A. Buonomano, C. Forzano, S.A. Kalogirou, A. Palombo, Building façade integrated solar thermal collectors for air heating: experimentation, modelling and applications. Appl. Energy 239, 658–679 (2019)CrossRef
5.
Zurück zum Zitat De Gracia, A., Navarro, L., Castell, A., Boer, D., & Cabeza, L. F. Life cycle assessment of a ventilated facade with PCM in its air chamber. Solar Energy, 104, 115–123.ECOFYS. Assessment of cost optimal calculations in the context of the EPBD (2014) De Gracia, A., Navarro, L., Castell, A., Boer, D., & Cabeza, L. F. Life cycle assessment of a ventilated facade with PCM in its air chamber. Solar Energy, 104, 115–123.ECOFYS. Assessment of cost optimal calculations in the context of the EPBD (2014)
6.
Zurück zum Zitat U. BEIS, The clean growth strategy: leading the way to a low carbon future, UK department for business, Energy Ind. Strategy (2017) U. BEIS, The clean growth strategy: leading the way to a low carbon future, UK department for business, Energy Ind. Strategy (2017)
9.
Zurück zum Zitat G. Ferrer, C. Barreneche, A. Solé, I. Martorell, L.F. Cabeza, New proposed methodology for specific heat capacity determination of materials for thermal energy storage (TES) by DSC. J. Energy Storage 11, 1–6 (2017)CrossRef G. Ferrer, C. Barreneche, A. Solé, I. Martorell, L.F. Cabeza, New proposed methodology for specific heat capacity determination of materials for thermal energy storage (TES) by DSC. J. Energy Storage 11, 1–6 (2017)CrossRef
10.
Zurück zum Zitat F. Mohammadnejad, S. Hossainpour, A CFD modeling and investigation of a packed bed of high temperature phase-change materials (PCMs) with different layer configurations, J. Energy Storage 28 (2020) F. Mohammadnejad, S. Hossainpour, A CFD modeling and investigation of a packed bed of high temperature phase-change materials (PCMs) with different layer configurations, J. Energy Storage 28 (2020)
11.
Zurück zum Zitat T. Bouhal, T. El Rhafiki, T. Kousksou, A. Jamil, Y. Zeraouli, PCM addition inside solar water heaters: numerical comparative approach. J. Energy Storage 19, 232–246 (2018)CrossRef T. Bouhal, T. El Rhafiki, T. Kousksou, A. Jamil, Y. Zeraouli, PCM addition inside solar water heaters: numerical comparative approach. J. Energy Storage 19, 232–246 (2018)CrossRef
12.
Zurück zum Zitat C. Barreneche, M.E. Navarro, L.F. Cabeza, A.I. Fernández, New database to select phase-change materials: chemical nature, properties, and applications. J. Energy Storage 3, 18–24 (2015)CrossRef C. Barreneche, M.E. Navarro, L.F. Cabeza, A.I. Fernández, New database to select phase-change materials: chemical nature, properties, and applications. J. Energy Storage 3, 18–24 (2015)CrossRef
13.
Zurück zum Zitat Y. Li, Z. Ding, Y. Du, Techno-economic optimization of open-air swimming pool heating system with PCM storage tank for winter applications, Renew. Energy 150, 878–890 (2020) Y. Li, Z. Ding, Y. Du, Techno-economic optimization of open-air swimming pool heating system with PCM storage tank for winter applications, Renew. Energy 150, 878–890 (2020)
14.
Zurück zum Zitat Y. Li, N. Zhang, Z. Ding, Investigation on the energy performance of using airsource heat pump to charge PCM storage tank, J. Energy Storage 28 (2020) Y. Li, N. Zhang, Z. Ding, Investigation on the energy performance of using airsource heat pump to charge PCM storage tank, J. Energy Storage 28 (2020)
15.
Zurück zum Zitat P. Moreno, C. Solé, A. Castell, L.F. Cabeza, The use of phase-change materials in domestic heat pump and air-conditioning systems for short term storage: a review. Renewable Sustainable Energy Rev. 39, 1–13 (2014)CrossRef P. Moreno, C. Solé, A. Castell, L.F. Cabeza, The use of phase-change materials in domestic heat pump and air-conditioning systems for short term storage: a review. Renewable Sustainable Energy Rev. 39, 1–13 (2014)CrossRef
16.
Zurück zum Zitat Á.Á. Pardiñas, M.J. Alonso, R. Diz, K.H. Kvalsvik, J. Fernández-Seara, State-of-theart for the use of phase-change materials in tanks coupled with heat pumps. Energy Build. 140, 28–41 (2017)CrossRef Á.Á. Pardiñas, M.J. Alonso, R. Diz, K.H. Kvalsvik, J. Fernández-Seara, State-of-theart for the use of phase-change materials in tanks coupled with heat pumps. Energy Build. 140, 28–41 (2017)CrossRef
17.
Zurück zum Zitat Y. Li, Y. Du, T. Xu, H. Wu, X. Zhou, Z. Ling, Z. Zhang, Optimization of thermal management system for Li-ion batteries using phase-change material. Appl. Therm. Eng. 131, 766–778 (2018)CrossRef Y. Li, Y. Du, T. Xu, H. Wu, X. Zhou, Z. Ling, Z. Zhang, Optimization of thermal management system for Li-ion batteries using phase-change material. Appl. Therm. Eng. 131, 766–778 (2018)CrossRef
18.
Zurück zum Zitat V.A.A. Raj, R. Velraj, Review on free cooling of buildings using phase-change materials. Renewable Sustainable Energy Rev. 14(9), 2819–2829 (2010)CrossRef V.A.A. Raj, R. Velraj, Review on free cooling of buildings using phase-change materials. Renewable Sustainable Energy Rev. 14(9), 2819–2829 (2010)CrossRef
19.
Zurück zum Zitat A. Shukla, D. Buddhi, R. Sawhney, Solar water heaters with phase-change material thermal energy storage medium: a review. Renew Sustain Energy Rev 13, 2119–2125 (2009)CrossRef A. Shukla, D. Buddhi, R. Sawhney, Solar water heaters with phase-change material thermal energy storage medium: a review. Renew Sustain Energy Rev 13, 2119–2125 (2009)CrossRef
20.
Zurück zum Zitat A. Pasupathy, R. Velraj, R. Seeniraj, Phase-change material-based building architecture for thermal management in residential and commercial establishments. Renew Sustain Energy Rev 12, 39–64 (2008)CrossRef A. Pasupathy, R. Velraj, R. Seeniraj, Phase-change material-based building architecture for thermal management in residential and commercial establishments. Renew Sustain Energy Rev 12, 39–64 (2008)CrossRef
21.
Zurück zum Zitat C. Alkan, A. Sarı, A. Karaipekli, O. Uzun, Preparation, characterization, and thermal properties of microencapsulated phase-change material for thermal energy storage. Sol Energy Mater Sol Cells 93, 143–147 (2009)CrossRef C. Alkan, A. Sarı, A. Karaipekli, O. Uzun, Preparation, characterization, and thermal properties of microencapsulated phase-change material for thermal energy storage. Sol Energy Mater Sol Cells 93, 143–147 (2009)CrossRef
22.
Zurück zum Zitat X. Sun, Q. Zhang, M.A. Medina, K.O. Lee, Energy and economic analysis of a building enclosure outfitted with a phase-change material board (PCMB). Energy Convers Manage 83, 73–78 (2014)CrossRef X. Sun, Q. Zhang, M.A. Medina, K.O. Lee, Energy and economic analysis of a building enclosure outfitted with a phase-change material board (PCMB). Energy Convers Manage 83, 73–78 (2014)CrossRef
23.
Zurück zum Zitat R. Parameshwaran, S. Harikrishnan, S. Kalaiselvam, Energy efficient PCM-based variable air volume air conditioning system for modern buildings. Energy Build 42, 1353–1360 (2010)CrossRef R. Parameshwaran, S. Harikrishnan, S. Kalaiselvam, Energy efficient PCM-based variable air volume air conditioning system for modern buildings. Energy Build 42, 1353–1360 (2010)CrossRef
24.
Zurück zum Zitat J. Turnpenny, D. Etheridge, D. Reay. Novel ventilation cooling system for reducing air conditioning in buildings. Part I: testing and theoretical modelling. Appl Therm Eng 20, pp. 1019–37 (2000) J. Turnpenny, D. Etheridge, D. Reay. Novel ventilation cooling system for reducing air conditioning in buildings. Part I: testing and theoretical modelling. Appl Therm Eng 20, pp. 1019–37 (2000)
25.
Zurück zum Zitat M. Silakhori, H.S.C. Metselaar, T.M.I. Mahlia, H. Fauzi, S. Baradaran, M.S. Naghavi, Palmitic acid/polypyrrole composites as form-stable phase-change materials for thermal energy storage. Energy Convers Manage 80, 491–497 (2014)CrossRef M. Silakhori, H.S.C. Metselaar, T.M.I. Mahlia, H. Fauzi, S. Baradaran, M.S. Naghavi, Palmitic acid/polypyrrole composites as form-stable phase-change materials for thermal energy storage. Energy Convers Manage 80, 491–497 (2014)CrossRef
26.
Zurück zum Zitat Zalba B, Marı´n JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase-change: materials, heat transfer analysis and applications. Appl Therm Eng 23, 251–83 (2003) Zalba B, Marı´n JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase-change: materials, heat transfer analysis and applications. Appl Therm Eng 23, 251–83 (2003)
27.
Zurück zum Zitat S. Colclough, P. Griffiths, S. Gschwander. Thermal energy storage and the passive house standard (2009) S. Colclough, P. Griffiths, S. Gschwander. Thermal energy storage and the passive house standard (2009)
28.
Zurück zum Zitat L. Jing, P. Gang, J. Jie, Optimization of low temperature solar thermal electric generation with organic rankine cycle in different areas. Appl Energy 87, 3355–3365 (2010)CrossRef L. Jing, P. Gang, J. Jie, Optimization of low temperature solar thermal electric generation with organic rankine cycle in different areas. Appl Energy 87, 3355–3365 (2010)CrossRef
29.
Zurück zum Zitat M. Chaabane, H. Mhiri, P. Bournot, Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase-change materials (PCM). Energy Convers Manage 78, 897–903 (2014)CrossRef M. Chaabane, H. Mhiri, P. Bournot, Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase-change materials (PCM). Energy Convers Manage 78, 897–903 (2014)CrossRef
30.
Zurück zum Zitat M. Cheralathan, R. Velraj, S. Renganarayanan, Performance analysis on industrial refrigeration system integrated with encapsulated PCM-based cool thermal energy storage system. Int J Energy Res 31, 1398–1413 (2007)MATHCrossRef M. Cheralathan, R. Velraj, S. Renganarayanan, Performance analysis on industrial refrigeration system integrated with encapsulated PCM-based cool thermal energy storage system. Int J Energy Res 31, 1398–1413 (2007)MATHCrossRef
31.
Zurück zum Zitat B. Beyhan, H. Paksoy, Y. Das_gan. Root zone temperature control with thermal energy storage in phase-change materials for soilless greenhouse applications. Energy Convers Manage 74, 446–53 (2013) B. Beyhan, H. Paksoy, Y. Das_gan. Root zone temperature control with thermal energy storage in phase-change materials for soilless greenhouse applications. Energy Convers Manage 74, 446–53 (2013)
32.
Zurück zum Zitat L. Yang, X. Jin, Y. Zhang, K. Du, Recent development on heat transfer and various applications of phase-change materials. J Clean Prod 287, 124432 (2021)CrossRef L. Yang, X. Jin, Y. Zhang, K. Du, Recent development on heat transfer and various applications of phase-change materials. J Clean Prod 287, 124432 (2021)CrossRef
33.
Zurück zum Zitat J. Huang, Y. Luo, M. Weng, J. Yu, L. Sun, H. Zeng, et al. Advances and Applications of Phase-change Materials (PCMs) and PCMs-based Technologies. ES Mater Manuf (2021) J. Huang, Y. Luo, M. Weng, J. Yu, L. Sun, H. Zeng, et al. Advances and Applications of Phase-change Materials (PCMs) and PCMs-based Technologies. ES Mater Manuf (2021)
34.
Zurück zum Zitat B K, Pandey AK, S Shahabuddin, M Samykano, M T, R Saidur. Phase-change materials integrated solar thermal energy systems: global trends and current practices in experimental approaches. J Energy Storage 27, 101118 (2020) B K, Pandey AK, S Shahabuddin, M Samykano, M T, R Saidur. Phase-change materials integrated solar thermal energy systems: global trends and current practices in experimental approaches. J Energy Storage 27, 101118 (2020)
35.
Zurück zum Zitat P.K. Singh Rathore, S.K. Shukla, N.K. Gupta, Potential of microencapsulated PCM for energy savings in buildings: A critical review. Sustain Cities Soc 53, 101884 (2020)CrossRef P.K. Singh Rathore, S.K. Shukla, N.K. Gupta, Potential of microencapsulated PCM for energy savings in buildings: A critical review. Sustain Cities Soc 53, 101884 (2020)CrossRef
36.
Zurück zum Zitat Arıcı M, Bilgin F, Ni^zeti´c S, Karabay H. PCM integrated to external building walls: an optimization study on maximum activation of latent heat. Appl Therm Eng 165, 114560 (2020) Arıcı M, Bilgin F, Ni^zeti´c S, Karabay H. PCM integrated to external building walls: an optimization study on maximum activation of latent heat. Appl Therm Eng 165, 114560 (2020)
37.
Zurück zum Zitat K. Saafi, N. Daouas, Energy and cost efficiency of phase-change materials integrated in building envelopes under Tunisia Mediterranean climate. Energy 187, 115987 (2019)CrossRef K. Saafi, N. Daouas, Energy and cost efficiency of phase-change materials integrated in building envelopes under Tunisia Mediterranean climate. Energy 187, 115987 (2019)CrossRef
38.
Zurück zum Zitat Y. Lin, Y. Jia, G. Alva, G. Fang, Review on thermal conductivity enhancement, thermal properties and applications of phase-change materials in thermal energy storage. Renew Sustain Energy Rev 82, 2730–2742 (2018)CrossRef Y. Lin, Y. Jia, G. Alva, G. Fang, Review on thermal conductivity enhancement, thermal properties and applications of phase-change materials in thermal energy storage. Renew Sustain Energy Rev 82, 2730–2742 (2018)CrossRef
39.
Zurück zum Zitat J.Z. Alvi, Y. Feng, Q. Wang, M. Imran, L.A. Khan, G. Pei, Effect of phase-change material storage on the dynamic performance of a direct vapor generation solar organic rankine cycle system. Energies 13, 5904 (2020)CrossRef J.Z. Alvi, Y. Feng, Q. Wang, M. Imran, L.A. Khan, G. Pei, Effect of phase-change material storage on the dynamic performance of a direct vapor generation solar organic rankine cycle system. Energies 13, 5904 (2020)CrossRef
40.
Zurück zum Zitat R. Zeinelabdein, S. Omer, G. Gan, Critical review of latent heat storage systems for free cooling in buildings. Renew Sustain Energy Rev 82, 2843–2868 (2018)CrossRef R. Zeinelabdein, S. Omer, G. Gan, Critical review of latent heat storage systems for free cooling in buildings. Renew Sustain Energy Rev 82, 2843–2868 (2018)CrossRef
41.
Zurück zum Zitat M. Song, F. Niu, N. Mao, Y. Hu, S. Deng, Review on building energy performance improvement using phase-change materials. Energy Build 158, 776–793 (2018)CrossRef M. Song, F. Niu, N. Mao, Y. Hu, S. Deng, Review on building energy performance improvement using phase-change materials. Energy Build 158, 776–793 (2018)CrossRef
42.
Zurück zum Zitat A.M. Thiele, G. Sant, L. Pilon, Diurnal thermal analysis of micro encapsulated PCM concrete composite walls. Energy Convers. Manage. 93, 215–227 (2015)CrossRef A.M. Thiele, G. Sant, L. Pilon, Diurnal thermal analysis of micro encapsulated PCM concrete composite walls. Energy Convers. Manage. 93, 215–227 (2015)CrossRef
43.
Zurück zum Zitat N. Soares, A.R. Gaspar, P. Santos, J.J. Costa, Experimental evaluation of the heat transfer through small PCM-based thermal energy storage units for building applications. Energy Build. 116, 18–34 (2016)CrossRef N. Soares, A.R. Gaspar, P. Santos, J.J. Costa, Experimental evaluation of the heat transfer through small PCM-based thermal energy storage units for building applications. Energy Build. 116, 18–34 (2016)CrossRef
44.
Zurück zum Zitat L. Erlbeck, P. Schreiner, K. Schlachter, P. D¨ornhofer, F. Fasel, F.J. Methner, o M. R¨adle, Adjustment of thermal behavior by changing the shape of PCM inclusions in concrete blocks, Energy Convers. Manag. 158, 256–265 (2018) L. Erlbeck, P. Schreiner, K. Schlachter, P. D¨ornhofer, F. Fasel, F.J. Methner, o M. R¨adle, Adjustment of thermal behavior by changing the shape of PCM inclusions in concrete blocks, Energy Convers. Manag. 158, 256–265 (2018)
45.
Zurück zum Zitat M. Ahangari, M. Maerefat, An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions. Sustain. Cities Soc. 44, 120–129 (2019)CrossRef M. Ahangari, M. Maerefat, An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions. Sustain. Cities Soc. 44, 120–129 (2019)CrossRef
46.
Zurück zum Zitat R. Saxena, D. Rakshit, S.C. Kaushik, Experimental assessment of phase-change Material (PCM) embedded bricks for passive conditioning in buildings. Renew. Energy 149, 587–599 (2020)CrossRef R. Saxena, D. Rakshit, S.C. Kaushik, Experimental assessment of phase-change Material (PCM) embedded bricks for passive conditioning in buildings. Renew. Energy 149, 587–599 (2020)CrossRef
47.
Zurück zum Zitat Y. Zhang, J. Huang, X. Fang, Z. Ling, Z. Zhang, Optimal roof structure with multilayer cooling function materials for building energy saving. Int. J. Energy Res. 44, 1594–1606 (2020)CrossRef Y. Zhang, J. Huang, X. Fang, Z. Ling, Z. Zhang, Optimal roof structure with multilayer cooling function materials for building energy saving. Int. J. Energy Res. 44, 1594–1606 (2020)CrossRef
48.
Zurück zum Zitat Y. Kusama, Y. Ishidoya, Thermal effects of a novel phase-change material (PCM) plaster under different insulation and heating scenarios. Energy Build. 141, 226–237 (2017)CrossRef Y. Kusama, Y. Ishidoya, Thermal effects of a novel phase-change material (PCM) plaster under different insulation and heating scenarios. Energy Build. 141, 226–237 (2017)CrossRef
49.
Zurück zum Zitat K. Kant, A. Shukla, A. Sharma, Heat transfer studies of building brick containing phase-change materials. Sol. Energy 155, 1233–1242 (2017)CrossRef K. Kant, A. Shukla, A. Sharma, Heat transfer studies of building brick containing phase-change materials. Sol. Energy 155, 1233–1242 (2017)CrossRef
50.
Zurück zum Zitat S. Kumar, S. Arun Prakash, V. Pandiyarajan, N.B. Geetha, V. Antony Aroul Raj, R. Velraj, Effect of phase-change material integration in clay hollow brick composite in building envelope for thermal management of energy efficien buildings, J. Build. Phys. 43, 351–364 (2019) S. Kumar, S. Arun Prakash, V. Pandiyarajan, N.B. Geetha, V. Antony Aroul Raj, R. Velraj, Effect of phase-change material integration in clay hollow brick composite in building envelope for thermal management of energy efficien buildings, J. Build. Phys. 43, 351–364 (2019)
51.
Zurück zum Zitat S. Rucevskis, P. Akishin, A. Korjakins, Performance evaluation of an active PCM thermal energy storage system for space cooling in residential buildings. Environ. Clim. Technol. 23, 74–89 (2019)CrossRef S. Rucevskis, P. Akishin, A. Korjakins, Performance evaluation of an active PCM thermal energy storage system for space cooling in residential buildings. Environ. Clim. Technol. 23, 74–89 (2019)CrossRef
52.
Zurück zum Zitat N. Zhu, S. Li, P. Hu, F. Lei, R. Deng, Numerical investigations on performance of phase-change material Trombe wall in building. Energy 187, 116057 (2019)CrossRef N. Zhu, S. Li, P. Hu, F. Lei, R. Deng, Numerical investigations on performance of phase-change material Trombe wall in building. Energy 187, 116057 (2019)CrossRef
53.
Zurück zum Zitat C. Li, H. Yu, Y. Song, Y. Tang, P. Chen, H. Hu, M. Wang, Z. Liu, Experimental thermal performance of wallboard with hybrid microencapsulated phase-change materials for building application. J. Build. Eng. 28, 101051 (2020)CrossRef C. Li, H. Yu, Y. Song, Y. Tang, P. Chen, H. Hu, M. Wang, Z. Liu, Experimental thermal performance of wallboard with hybrid microencapsulated phase-change materials for building application. J. Build. Eng. 28, 101051 (2020)CrossRef
54.
Zurück zum Zitat E. Tunçbilek, M. Arıcı, S. Bouadila, S. Wonorahardjo, Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region. J. Therm. Anal. Calorim. 141, 613–624 (2020)CrossRef E. Tunçbilek, M. Arıcı, S. Bouadila, S. Wonorahardjo, Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region. J. Therm. Anal. Calorim. 141, 613–624 (2020)CrossRef
55.
Zurück zum Zitat M.J. Abden, Z. Tao, Z. Pan, L. George, R. Wuhrer, Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation. Appl. Energy 259, 114113 (2020)CrossRef M.J. Abden, Z. Tao, Z. Pan, L. George, R. Wuhrer, Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation. Appl. Energy 259, 114113 (2020)CrossRef
56.
Zurück zum Zitat X. Kong, L. Wang, H. Li, G. Yuan, C. Yao, Experimental study on a novel hybrid system of active composite PCM wall and solar thermal system for clean heating supply in winter. Sol. Energy 195, 259–270 (2020)CrossRef X. Kong, L. Wang, H. Li, G. Yuan, C. Yao, Experimental study on a novel hybrid system of active composite PCM wall and solar thermal system for clean heating supply in winter. Sol. Energy 195, 259–270 (2020)CrossRef
57.
Zurück zum Zitat E. Elnajjar, Using PCM embedded in building material for thermal management: performance assessment study. Energy Build. 151, 28–34 (2017)CrossRef E. Elnajjar, Using PCM embedded in building material for thermal management: performance assessment study. Energy Build. 151, 28–34 (2017)CrossRef
58.
Zurück zum Zitat Z. Younsi, H. Naji, Numerical simulation and thermal performance of hybrid brick walls embedding a phase-change material for passive building applications. J. Therm. Anal. Calorim. 140, 965–978 (2020)CrossRef Z. Younsi, H. Naji, Numerical simulation and thermal performance of hybrid brick walls embedding a phase-change material for passive building applications. J. Therm. Anal. Calorim. 140, 965–978 (2020)CrossRef
59.
Zurück zum Zitat R.V. Rao, A decision making methodology for material selection using an improved compromise ranking method. Mater. Des. 29, 1949–1954 (2008)CrossRef R.V. Rao, A decision making methodology for material selection using an improved compromise ranking method. Mater. Des. 29, 1949–1954 (2008)CrossRef
60.
Zurück zum Zitat R. Mikučionienė, V. Martinaitis, E. Keras, Evaluation of energy efficiency measures sustainability by decision tree method. Energy and Buildings 76, 64–71 (2014)CrossRef R. Mikučionienė, V. Martinaitis, E. Keras, Evaluation of energy efficiency measures sustainability by decision tree method. Energy and Buildings 76, 64–71 (2014)CrossRef
61.
Zurück zum Zitat V. Motuzienė, A. Rogoža, V. Lapinskienė, T. Vilutienė, Construction solutions for energy efficient single-family house based on its life cycle multi-criteria analysis: a case study, Journal of Cleaner Production, 112. Part 1, 532–541 (2016) V. Motuzienė, A. Rogoža, V. Lapinskienė, T. Vilutienė, Construction solutions for energy efficient single-family house based on its life cycle multi-criteria analysis: a case study, Journal of Cleaner Production, 112. Part 1, 532–541 (2016)
62.
Zurück zum Zitat M. Yurdakul, Y.T. İç, Analysis of the benefit generated by using fuzzy numbers in a TOPSIS model developed for machine tool selection problems. J. Mater. Process. Technol. 209, 310–317 (2009)CrossRef M. Yurdakul, Y.T. İç, Analysis of the benefit generated by using fuzzy numbers in a TOPSIS model developed for machine tool selection problems. J. Mater. Process. Technol. 209, 310–317 (2009)CrossRef
63.
Zurück zum Zitat A. Kluczek, B. Gladysz, Analytical Hierarchy Process/Technique for Order Preference by Similarity to Ideal Solution-based approach to the generation of environmental improvement options for painting process e Results from an industrial case study. J. Clean. Prod. 101, 360–367 (2015)CrossRef A. Kluczek, B. Gladysz, Analytical Hierarchy Process/Technique for Order Preference by Similarity to Ideal Solution-based approach to the generation of environmental improvement options for painting process e Results from an industrial case study. J. Clean. Prod. 101, 360–367 (2015)CrossRef
64.
Zurück zum Zitat B. Sen, P. Bhattacharjee, U. Mandal, A comparative study of some prominentmulticriteria decision making methods for connecting rod material selection. Perspect. Sci. 8, 547–549 (2016)CrossRef B. Sen, P. Bhattacharjee, U. Mandal, A comparative study of some prominentmulticriteria decision making methods for connecting rod material selection. Perspect. Sci. 8, 547–549 (2016)CrossRef
65.
Zurück zum Zitat R.V. Rao, A decision making methodology for material selection using an improved compromise ranking method. Mater. Des. 29(10), 1949–1954 (2008)CrossRef R.V. Rao, A decision making methodology for material selection using an improved compromise ranking method. Mater. Des. 29(10), 1949–1954 (2008)CrossRef
66.
Zurück zum Zitat M.J.J. Wang, T.C. Chang, Tool steel materials selection under fuzzy environment. Fuzzy Sets Sys. 72, 263–270 (1995)CrossRef M.J.J. Wang, T.C. Chang, Tool steel materials selection under fuzzy environment. Fuzzy Sets Sys. 72, 263–270 (1995)CrossRef
67.
Zurück zum Zitat X.F. Zha, A web-based advisory system for process and material selection in concurrent product design for manufacturing design. Int J Adv Manuf Tech. 25, 233–243 (2001)CrossRef X.F. Zha, A web-based advisory system for process and material selection in concurrent product design for manufacturing design. Int J Adv Manuf Tech. 25, 233–243 (2001)CrossRef
68.
Zurück zum Zitat R. Amen, P. Vomacka, Case-based reasoning as a tool for materials selection. Mat Des. 22, 353–358 (2001)CrossRef R. Amen, P. Vomacka, Case-based reasoning as a tool for materials selection. Mat Des. 22, 353–358 (2001)CrossRef
69.
Zurück zum Zitat R.S. Khabbaz, B.D. Manshadi, M.R. Aabedian, A simplified fuzzy logic approach for material selection in mechanical engineering design. Mat Des. 30, 687–697 (2009)CrossRef R.S. Khabbaz, B.D. Manshadi, M.R. Aabedian, A simplified fuzzy logic approach for material selection in mechanical engineering design. Mat Des. 30, 687–697 (2009)CrossRef
70.
Zurück zum Zitat A. Kobryn, J. Prystrom, Processing technique of ratings for ranking of alternatives (PROTERRA). Exp Sys. 35(4), 12279 (2018)CrossRef A. Kobryn, J. Prystrom, Processing technique of ratings for ranking of alternatives (PROTERRA). Exp Sys. 35(4), 12279 (2018)CrossRef
71.
Zurück zum Zitat DH Jee, J Kang K. A method for optimal material selection aided with decision making theory. Mater Des 21(3), 199–206 (2000) DH Jee, J Kang K. A method for optimal material selection aided with decision making theory. Mater Des 21(3), 199–206 (2000)
72.
Zurück zum Zitat R.V. Rao, B.K. Patel, A subjective and objective integrated multiple attribute decision making method for material selection. Mater Des 31, 4738–4747 (2010)CrossRef R.V. Rao, B.K. Patel, A subjective and objective integrated multiple attribute decision making method for material selection. Mater Des 31, 4738–4747 (2010)CrossRef
73.
Zurück zum Zitat M. Thambidurai, K. Panchabikesan, V. Ramalingam, Review on phase-change material based free cooling of buildings—The way toward sustainability. J. Energy Storage 4, 74–88 (2015)CrossRef M. Thambidurai, K. Panchabikesan, V. Ramalingam, Review on phase-change material based free cooling of buildings—The way toward sustainability. J. Energy Storage 4, 74–88 (2015)CrossRef
74.
Zurück zum Zitat R. Parameshwaran, S. Harikrishnan, S. Kalaiselvam, Energy efficient PCM-based variable air volume air conditioning system for modern buildings. Energy and Buildings 42(8), 1353–1360 (2010)CrossRef R. Parameshwaran, S. Harikrishnan, S. Kalaiselvam, Energy efficient PCM-based variable air volume air conditioning system for modern buildings. Energy and Buildings 42(8), 1353–1360 (2010)CrossRef
75.
Zurück zum Zitat L. Socaciu, O. Giurgiu, D. Banyai, M. Simion, PCM selection using AHP method to maintain thermal comfort of the vehicle occupants. Energy Procedia 85, 489–497 (2016)CrossRef L. Socaciu, O. Giurgiu, D. Banyai, M. Simion, PCM selection using AHP method to maintain thermal comfort of the vehicle occupants. Energy Procedia 85, 489–497 (2016)CrossRef
76.
Zurück zum Zitat K. Yang, N. Zhu, C. Chang, D. Wang, S. Yang, S. Ma, A methodological concept for phase-change material selection based on multi-criteria decision making (MCDM): a case study. Energy 165, 1085–1096 (2018)CrossRef K. Yang, N. Zhu, C. Chang, D. Wang, S. Yang, S. Ma, A methodological concept for phase-change material selection based on multi-criteria decision making (MCDM): a case study. Energy 165, 1085–1096 (2018)CrossRef
77.
Zurück zum Zitat M. Rastogi, A. Chauhan, R. Vaish, A. Kishan, Selection and performance assessment of Phase-change Materials for heating, ventilation and air-conditioning applications. Energy Convers. Manage. 2015(89), 260–269 (2015)CrossRef M. Rastogi, A. Chauhan, R. Vaish, A. Kishan, Selection and performance assessment of Phase-change Materials for heating, ventilation and air-conditioning applications. Energy Convers. Manage. 2015(89), 260–269 (2015)CrossRef
78.
Zurück zum Zitat M. Zeleny, J.L. Cochrane, Multiple criteria decision making (McGraw-Hill, New York, 1982)MATH M. Zeleny, J.L. Cochrane, Multiple criteria decision making (McGraw-Hill, New York, 1982)MATH
79.
Zurück zum Zitat R. Baetens, B.P. Jelle, A. Gustavsen, Phase-change materials for building applications: a state-of-the-art review. Energy and Buildings 42(9), 1361–1368 (2010)CrossRef R. Baetens, B.P. Jelle, A. Gustavsen, Phase-change materials for building applications: a state-of-the-art review. Energy and Buildings 42(9), 1361–1368 (2010)CrossRef
86.
Zurück zum Zitat L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A.I. Fernández, Materials used as PCM in thermal energy storage in buildings: a review. Renew. Sustain. Energy Rev. 15, 1675–1695 (2011)CrossRef L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, A.I. Fernández, Materials used as PCM in thermal energy storage in buildings: a review. Renew. Sustain. Energy Rev. 15, 1675–1695 (2011)CrossRef
Metadaten
Titel
Selection of Phase-Change Material for Building Envelope by Qualitative Decision-Support Analysis
verfasst von
F. Balo
L. S. Sua
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-20506-4_8