Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Self-Assembly of Nanoparticles into Gold Metal Liquid-like Droplets (MeLLDs)

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Simple methods to self-assemble coatings and films from nanoparticles are highly desirable in many practical scenarios, yet scarcely any examples of simple, robust approaches to coat macroscopic droplets with continuous, thick (multilayer), reflective, and stable liquid nanoparticle films exist. Here, we introduce a facile and rapid one-step route to form films of reflective liquid-like gold that encase macroscopic droplets, and denote these as gold metal liquid-like droplets (MeLLDs). The present approach takes advantage of the inherent self-assembly of gold nanoparticles at liquid–liquid interfaces and the increase in rates of nanoparticle aggregate trapping at the interface during emulsification. The ease of displacement of the stabilizing citrate ligands by appropriate redox active molecules that act as a lubricating molecular glue is key. Specifically, the heterogeneous interaction of citrate-stabilized aqueous gold nanoparticles with the lipophilic electron donor tetrathiafulvalene under emulsification produces gold MeLLDs. This methodology is novel, relying exclusively on electrochemical reactions, i.e., the oxidation of tetrathiafulvalene to its radical cation by the gold nanoparticle, and electrostatic interactions between the radical cation and nanoparticles. The gold MeLLDs are reversibly deformable upon compression and decompression and kinetically stable for extended periods of time in excess of a year.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sönnichsen, C., Reinhard, B.M., Liphardt, J., Alivisatos, A.P.: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005)CrossRef Sönnichsen, C., Reinhard, B.M., Liphardt, J., Alivisatos, A.P.: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005)CrossRef
2.
Zurück zum Zitat Ghosh, S.K., Pal, T.: Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007)CrossRef Ghosh, S.K., Pal, T.: Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007)CrossRef
3.
Zurück zum Zitat Es-Souni, M., Fischer-Brandies, H., Es-Souni, M.: Versatile nanocomposite coatings with tunable cell adhesion and bactericidity. Adv. Funct. Mater. 18, 3179–3188 (2008)CrossRef Es-Souni, M., Fischer-Brandies, H., Es-Souni, M.: Versatile nanocomposite coatings with tunable cell adhesion and bactericidity. Adv. Funct. Mater. 18, 3179–3188 (2008)CrossRef
4.
Zurück zum Zitat Puntes, V., Krishnan, K., Alivisatos, A.: Colloidal nanocrystal shape and size control: the case of cobalt. Science (80) 291, 2215–2117 (2001)CrossRef Puntes, V., Krishnan, K., Alivisatos, A.: Colloidal nanocrystal shape and size control: the case of cobalt. Science (80) 291, 2215–2117 (2001)CrossRef
5.
Zurück zum Zitat Borra, E.F., Seddiki, O., Angel, R., Eisenstein, D., Hickson, P., Seddon, K.R., Worden, S.P.: Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447, 979–981 (2007)CrossRef Borra, E.F., Seddiki, O., Angel, R., Eisenstein, D., Hickson, P., Seddon, K.R., Worden, S.P.: Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447, 979–981 (2007)CrossRef
6.
Zurück zum Zitat Khan, Z.A., Kumar, R., Mohammed, W.S., Hornyak, G.L., Dutta, J.: Optical thin film filters of colloidal gold and silica nanoparticles prepared by a layer-by-layer self-assembly method. J. Mater. Sci. 46, 6877–6882 (2011)CrossRef Khan, Z.A., Kumar, R., Mohammed, W.S., Hornyak, G.L., Dutta, J.: Optical thin film filters of colloidal gold and silica nanoparticles prepared by a layer-by-layer self-assembly method. J. Mater. Sci. 46, 6877–6882 (2011)CrossRef
7.
Zurück zum Zitat Saha, K., Agasti, S.S., Kim, C., Li, X., Rotello, V.M.: Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012)CrossRef Saha, K., Agasti, S.S., Kim, C., Li, X., Rotello, V.M.: Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012)CrossRef
8.
Zurück zum Zitat Daniel, M.C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)CrossRef Daniel, M.C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)CrossRef
9.
Zurück zum Zitat Borisova, D., Mohwald, H., Shchukin, D.G.: Mesoporous silica nanoparticles for active corrosion protection. ACS Nano 5, 1939–1946 (2011)CrossRef Borisova, D., Mohwald, H., Shchukin, D.G.: Mesoporous silica nanoparticles for active corrosion protection. ACS Nano 5, 1939–1946 (2011)CrossRef
10.
Zurück zum Zitat Zhang, X.T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., Fujishima, A.: Self-Cleaning particle coating with antireflection properties. Chem. Mater. 17, 696–700 (2005)CrossRef Zhang, X.T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T., Fujishima, A.: Self-Cleaning particle coating with antireflection properties. Chem. Mater. 17, 696–700 (2005)CrossRef
11.
Zurück zum Zitat Kowalczyk, B., Lagzi, I., Grzybowski, B.A: “Nanoarmoured” droplets of different shapes formed by interfacial self-assembly and crosslinking of metal nanoparticles. Nanoscale 2, 2366–2369 (2010)CrossRef Kowalczyk, B., Lagzi, I., Grzybowski, B.A: “Nanoarmoured” droplets of different shapes formed by interfacial self-assembly and crosslinking of metal nanoparticles. Nanoscale 2, 2366–2369 (2010)CrossRef
12.
Zurück zum Zitat Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 865 (2010) Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 865 (2010)
13.
Zurück zum Zitat Huda, S., Smoukov, S.K., Nakanishi, H., Kowalczyk, B., Bishop, K., Grzybowski, B.A.: Antibacterial nanoparticle monolayers prepared on chemically inert surfaces by cooperative electrostatic adsorption (CELA). ACS Appl. Mater. Interfaces 2, 1206–1210 (2010)CrossRef Huda, S., Smoukov, S.K., Nakanishi, H., Kowalczyk, B., Bishop, K., Grzybowski, B.A.: Antibacterial nanoparticle monolayers prepared on chemically inert surfaces by cooperative electrostatic adsorption (CELA). ACS Appl. Mater. Interfaces 2, 1206–1210 (2010)CrossRef
14.
Zurück zum Zitat Binder, W.H.: Supramolecular assembly of nanoparticles at liquid-liquid interfaces. Angew. Chemie Int. Ed. 44, 5172–5175 (2005)CrossRef Binder, W.H.: Supramolecular assembly of nanoparticles at liquid-liquid interfaces. Angew. Chemie Int. Ed. 44, 5172–5175 (2005)CrossRef
15.
Zurück zum Zitat Edel, J.B., Kornyshev, A.A., Urbakh, M.: Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas. ACS Nano 7, 9526–9532 (2013)CrossRef Edel, J.B., Kornyshev, A.A., Urbakh, M.: Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas. ACS Nano 7, 9526–9532 (2013)CrossRef
16.
Zurück zum Zitat Wang, D., Duan, H., Möhwald, H.: The water/oil interface: the emerging horizon for self-assembly of nanoparticles. Soft Matter 1, 412–416 (2005)CrossRef Wang, D., Duan, H., Möhwald, H.: The water/oil interface: the emerging horizon for self-assembly of nanoparticles. Soft Matter 1, 412–416 (2005)CrossRef
17.
Zurück zum Zitat Böker, A., He, J., Emrick, T., Russell, T.P.: Self-assembly of nanoparticles at interfaces. Soft Matter 3, 1231 (2007)CrossRef Böker, A., He, J., Emrick, T., Russell, T.P.: Self-assembly of nanoparticles at interfaces. Soft Matter 3, 1231 (2007)CrossRef
18.
Zurück zum Zitat Yogev, D., Efrima, S.: Novel silver metal liquidlike films. J. Phys. Chem. 92, 5754–5760 (1988)CrossRef Yogev, D., Efrima, S.: Novel silver metal liquidlike films. J. Phys. Chem. 92, 5754–5760 (1988)CrossRef
19.
Zurück zum Zitat Reincke, F., Hickey, S.G., Kegel, W.K., Vanmaekelbergh, D.: Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chemie Int. Ed. 43, 458–462 (2004)CrossRef Reincke, F., Hickey, S.G., Kegel, W.K., Vanmaekelbergh, D.: Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chemie Int. Ed. 43, 458–462 (2004)CrossRef
20.
Zurück zum Zitat Park, Y.-K., Yoo, S.-H., Park, S.: Assembly of highly ordered nanoparticle monolayers at a water/hexane interface. Langmuir 23, 10505–10510 (2007)CrossRef Park, Y.-K., Yoo, S.-H., Park, S.: Assembly of highly ordered nanoparticle monolayers at a water/hexane interface. Langmuir 23, 10505–10510 (2007)CrossRef
21.
Zurück zum Zitat Turek, V.A., Cecchini, M.P., Paget, J., Kucernak, A.R., Kornyshev, A.A., Edel, J.B.: Plasmonic ruler at the liquid-liquid interface. ACS Nano 6, 7789–7799 (2012)CrossRef Turek, V.A., Cecchini, M.P., Paget, J., Kucernak, A.R., Kornyshev, A.A., Edel, J.B.: Plasmonic ruler at the liquid-liquid interface. ACS Nano 6, 7789–7799 (2012)CrossRef
22.
Zurück zum Zitat Konrad, M.P., Doherty, A.P., Bell, S.E.J.: Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal. Chem. 85, 6783–6789 (2013)CrossRef Konrad, M.P., Doherty, A.P., Bell, S.E.J.: Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal. Chem. 85, 6783–6789 (2013)CrossRef
23.
Zurück zum Zitat Lee, K.Y., Cheong, G.-W., Han, S.W.: C60-Mediated self-assembly of gold nanoparticles at the liquid/liquid interface. Colloids Surf. A Physicochem. Eng. Asp. 275, 79–82 (2006)CrossRef Lee, K.Y., Cheong, G.-W., Han, S.W.: C60-Mediated self-assembly of gold nanoparticles at the liquid/liquid interface. Colloids Surf. A Physicochem. Eng. Asp. 275, 79–82 (2006)CrossRef
24.
Zurück zum Zitat Spiro, M.: Heterogeneous catalysis in solution. Part 17.—kinetics of oxidation–reduction reaction catalysed by electron transfer through the solid: an electrochemical treatment. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 75, 1507 (1979)CrossRef Spiro, M.: Heterogeneous catalysis in solution. Part 17.—kinetics of oxidation–reduction reaction catalysed by electron transfer through the solid: an electrochemical treatment. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 75, 1507 (1979)CrossRef
25.
Zurück zum Zitat Kim, K., Han, H.S., Choi, I., Lee, C., Hong, S., Suh, S.-H., Lee, L.P., Kang, T.: Interfacial liquid-state surface-enhanced raman spectroscopy. Nat. Commun. 4, 2182 (2013) Kim, K., Han, H.S., Choi, I., Lee, C., Hong, S., Suh, S.-H., Lee, L.P., Kang, T.: Interfacial liquid-state surface-enhanced raman spectroscopy. Nat. Commun. 4, 2182 (2013)
26.
Zurück zum Zitat Fang, P.-P., Chen, S., Deng, H., Scanlon, M.D., Gumy, F., Lee, H.J., Momotenko, D., Amstutz, V., Cortés-Salazar, F., Pereira, C.M., et al.: Conductive gold nanoparticle mirrors at liquid/liquid interfaces. ACS Nano 7, 9241–9248 (2013)CrossRef Fang, P.-P., Chen, S., Deng, H., Scanlon, M.D., Gumy, F., Lee, H.J., Momotenko, D., Amstutz, V., Cortés-Salazar, F., Pereira, C.M., et al.: Conductive gold nanoparticle mirrors at liquid/liquid interfaces. ACS Nano 7, 9241–9248 (2013)CrossRef
27.
Zurück zum Zitat Du, K., Knutson, C.R., Glogowski, E., McCarthy, K.D., Shenhar, R., Rotello, V.M., Tuominen, M.T., Emrick, T., Russell, T.P., Dinsmore, A.D.: Self-Assembled electrical contact to nanoparticles using metallic droplets. Small 5, 1974–1977 (2009)CrossRef Du, K., Knutson, C.R., Glogowski, E., McCarthy, K.D., Shenhar, R., Rotello, V.M., Tuominen, M.T., Emrick, T., Russell, T.P., Dinsmore, A.D.: Self-Assembled electrical contact to nanoparticles using metallic droplets. Small 5, 1974–1977 (2009)CrossRef
28.
Zurück zum Zitat Du, K., Glogowski, E., Tuominen, M.T., Emrick, T., Russell, T.P., Dinsmore, A.D.: Self-Assembly of gold nanoparticles on gallium droplets: controlling charge transport through microscopic devices. Langmuir 29, 13640–13646 (2013)CrossRef Du, K., Glogowski, E., Tuominen, M.T., Emrick, T., Russell, T.P., Dinsmore, A.D.: Self-Assembly of gold nanoparticles on gallium droplets: controlling charge transport through microscopic devices. Langmuir 29, 13640–13646 (2013)CrossRef
29.
Zurück zum Zitat Xu, Y., Konrad, M.P., Lee, W.W.Y., Ye, Z., Bell, S.E.J.: A method for promoting assembly of metallic and nonmetallic nanoparticles into interfacial monolayer films. Nano Lett. 16, 5255–5260 (2016)CrossRef Xu, Y., Konrad, M.P., Lee, W.W.Y., Ye, Z., Bell, S.E.J.: A method for promoting assembly of metallic and nonmetallic nanoparticles into interfacial monolayer films. Nano Lett. 16, 5255–5260 (2016)CrossRef
30.
Zurück zum Zitat Duan, H., Wang, D., Kurth, D.G., Mohwald, H.: Directing self-assembly of nanoparticles at water/oil interfaces. Angew. Chemie Int. Ed. 116, 5757–5760 (2004)CrossRef Duan, H., Wang, D., Kurth, D.G., Mohwald, H.: Directing self-assembly of nanoparticles at water/oil interfaces. Angew. Chemie Int. Ed. 116, 5757–5760 (2004)CrossRef
31.
Zurück zum Zitat Gadogbe, M., Ansar, S.M., Chu, I.-W., Zou, S., Zhang, D.: Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil. Langmuir 30, 11520–11527 (2014)CrossRef Gadogbe, M., Ansar, S.M., Chu, I.-W., Zou, S., Zhang, D.: Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil. Langmuir 30, 11520–11527 (2014)CrossRef
32.
Zurück zum Zitat Samanta, B., Yang, X.C., Ofir, Y., Park, M.H., Patra, D., Agasti, S.S., Miranda, O.R., Mo, Z.H., Rotello, V.M.: Catalytic microcapsules assembled from enzyme-nanoparticle conjugates at oil-water interfaces. Angew. Chemie Int. Ed. 48, 5341–5344 (2009)CrossRef Samanta, B., Yang, X.C., Ofir, Y., Park, M.H., Patra, D., Agasti, S.S., Miranda, O.R., Mo, Z.H., Rotello, V.M.: Catalytic microcapsules assembled from enzyme-nanoparticle conjugates at oil-water interfaces. Angew. Chemie Int. Ed. 48, 5341–5344 (2009)CrossRef
33.
Zurück zum Zitat Glogowski, E., He, J., Russell, T.P., Emrick, T.: Mixed monolayer coverage on gold nanoparticles for interfacial stabilization of immiscible fluids. Chem. Commun. 1, 4050–4052 (2005)CrossRef Glogowski, E., He, J., Russell, T.P., Emrick, T.: Mixed monolayer coverage on gold nanoparticles for interfacial stabilization of immiscible fluids. Chem. Commun. 1, 4050–4052 (2005)CrossRef
34.
Zurück zum Zitat Glogowski, E., Tangirala, R., He, J., Russell, T.P., Emrick, T.: Microcapsules of PEGylated gold nanoparticles prepared by fluid-fluid interfacial assembly. Nano Lett. 7, 389–393 (2007)CrossRef Glogowski, E., Tangirala, R., He, J., Russell, T.P., Emrick, T.: Microcapsules of PEGylated gold nanoparticles prepared by fluid-fluid interfacial assembly. Nano Lett. 7, 389–393 (2007)CrossRef
35.
Zurück zum Zitat Duan, H., Wang, D., Sobal, N.S., Giersig, M., Kurth, D.G., Möhwald, H.: Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. Nano Lett. 5, 949–952 (2005)CrossRef Duan, H., Wang, D., Sobal, N.S., Giersig, M., Kurth, D.G., Möhwald, H.: Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. Nano Lett. 5, 949–952 (2005)CrossRef
36.
Zurück zum Zitat Smirnov, E., Scanlon, M.D., Momotenko, D., Vrubel, H., Méndez, M.A., Brevet, P.-F., Girault, H.H.: Gold metal liquid-like droplets. ACS Nano 8, 9471–9481 (2014)CrossRef Smirnov, E., Scanlon, M.D., Momotenko, D., Vrubel, H., Méndez, M.A., Brevet, P.-F., Girault, H.H.: Gold metal liquid-like droplets. ACS Nano 8, 9471–9481 (2014)CrossRef
37.
Zurück zum Zitat Yogev, D., Efrima, S.: Silver metal liquidlike films (MELLFs). The effect of surfactants. Langmuir 2, 267–271 (1991)CrossRef Yogev, D., Efrima, S.: Silver metal liquidlike films (MELLFs). The effect of surfactants. Langmuir 2, 267–271 (1991)CrossRef
38.
Zurück zum Zitat Collier, C.P.: Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science (80) 277, 1978–1981 (1997)CrossRef Collier, C.P.: Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science (80) 277, 1978–1981 (1997)CrossRef
39.
Zurück zum Zitat Younan, N., Hojeij, M., Ribeaucourt, L., Girault, H.H.: Electrochemical properties of gold nanoparticles assembly at polarised liquid|liquid interfaces. Electrochem. Commun. 12, 912–915 (2010)CrossRef Younan, N., Hojeij, M., Ribeaucourt, L., Girault, H.H.: Electrochemical properties of gold nanoparticles assembly at polarised liquid|liquid interfaces. Electrochem. Commun. 12, 912–915 (2010)CrossRef
40.
Zurück zum Zitat Gingras, J., Déry, J.-P., Yockell-Lelièvre, H., Borra, E.F., Ritcey, A.M.: Surface films of silver nanoparticles for new liquid mirrors. Colloids Surf. A Physicochem. Eng. Asp. 279, 79–86 (2006)CrossRef Gingras, J., Déry, J.-P., Yockell-Lelièvre, H., Borra, E.F., Ritcey, A.M.: Surface films of silver nanoparticles for new liquid mirrors. Colloids Surf. A Physicochem. Eng. Asp. 279, 79–86 (2006)CrossRef
41.
Zurück zum Zitat Yen, Y., Lu, T., Lee, Y., Yu, C., Tsai, Y., Tseng, Y., Chen, H.: Highly reflective liquid mirrors: exploring the effects of localized surface plasmon resonance and the arrangement of nanoparticles on metal liquid-like films. ACS Appl. Mater. Interfaces 6, 4292–4300 (2014)CrossRef Yen, Y., Lu, T., Lee, Y., Yu, C., Tsai, Y., Tseng, Y., Chen, H.: Highly reflective liquid mirrors: exploring the effects of localized surface plasmon resonance and the arrangement of nanoparticles on metal liquid-like films. ACS Appl. Mater. Interfaces 6, 4292–4300 (2014)CrossRef
42.
Zurück zum Zitat Moskovits, M., Srnová-Šloufová, I., Vlčková, B.: Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435 (2002)CrossRef Moskovits, M., Srnová-Šloufová, I., Vlčková, B.: Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435 (2002)CrossRef
43.
Zurück zum Zitat Srnová-Šloufová, I., Lednický, F., Gemperle, A., Gemperlová, J.: Core−Shell (Ag)Au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir 16, 9928–9935 (2000)CrossRef Srnová-Šloufová, I., Lednický, F., Gemperle, A., Gemperlová, J.: Core−Shell (Ag)Au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir 16, 9928–9935 (2000)CrossRef
44.
Zurück zum Zitat Zhuo, Y., Yuan, R., Chai, Y., Zhang, Y., Li, X., Wang, N., Zhu, Q.: Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on nafion modified electrode surface for α-1-fetoprotein determinations. Sensors Actuators B Chem. 114, 631–639 (2006)CrossRef Zhuo, Y., Yuan, R., Chai, Y., Zhang, Y., Li, X., Wang, N., Zhu, Q.: Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on nafion modified electrode surface for α-1-fetoprotein determinations. Sensors Actuators B Chem. 114, 631–639 (2006)CrossRef
45.
Zurück zum Zitat Smirnov, E., Peljo, P., Scanlon, M.D., Gumy, F., Girault, H.H.: Self-healing gold mirrors and filters at liquid–liquid interfaces. Nanoscale 8, 7723–7737 (2016)CrossRef Smirnov, E., Peljo, P., Scanlon, M.D., Gumy, F., Girault, H.H.: Self-healing gold mirrors and filters at liquid–liquid interfaces. Nanoscale 8, 7723–7737 (2016)CrossRef
46.
Zurück zum Zitat Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004)CrossRef Hutter, E., Fendler, J.H.: Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004)CrossRef
47.
Zurück zum Zitat Zhao, L., Zhao, L.L., Kelly, K.L., Kelly, K.L., Schatz, G.C., Schatz, G.C.: The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B 107, 7343–7350 (2003)CrossRef Zhao, L., Zhao, L.L., Kelly, K.L., Kelly, K.L., Schatz, G.C., Schatz, G.C.: The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B 107, 7343–7350 (2003)CrossRef
48.
Zurück zum Zitat Olaya, A.A.J., Ge, P.-Y., Gonthier, J.F., Pechy, P., Corminboeuf, C., Girault, H.H.: Four-electron oxygen reduction by tetrathiafulvalene. J. Am. Chem. Soc. 133, 12115–12123 (2011)CrossRef Olaya, A.A.J., Ge, P.-Y., Gonthier, J.F., Pechy, P., Corminboeuf, C., Girault, H.H.: Four-electron oxygen reduction by tetrathiafulvalene. J. Am. Chem. Soc. 133, 12115–12123 (2011)CrossRef
49.
Zurück zum Zitat Weitz, D.A., Oliveria, M.: Fractal structures formed by kinetic aggregation of aqueous gold colloids. Phys. Rev. Lett. 52, 1433–1436 (1984)CrossRef Weitz, D.A., Oliveria, M.: Fractal structures formed by kinetic aggregation of aqueous gold colloids. Phys. Rev. Lett. 52, 1433–1436 (1984)CrossRef
50.
Zurück zum Zitat Kim, J.-Y., Kotov, N.A.: Charge transport dilemma of solution-processed nanomaterials. Chem. Mater. 26, 134–152 (2014)CrossRef Kim, J.-Y., Kotov, N.A.: Charge transport dilemma of solution-processed nanomaterials. Chem. Mater. 26, 134–152 (2014)CrossRef
51.
Zurück zum Zitat Müller, K., Wei, G., Raguse, B., Myers, J.: Three-Dimensional percolation effect on electrical conductivity in films of metal nanoparticles linked by organic molecules. Phys. Rev B 68, 155407 (2003)CrossRef Müller, K., Wei, G., Raguse, B., Myers, J.: Three-Dimensional percolation effect on electrical conductivity in films of metal nanoparticles linked by organic molecules. Phys. Rev B 68, 155407 (2003)CrossRef
52.
Zurück zum Zitat Momotenko, D.: Scanning electrochemical microscopy and finite element modeling of structural and transport properties of electrochemical systems, EPFL (2013) Momotenko, D.: Scanning electrochemical microscopy and finite element modeling of structural and transport properties of electrochemical systems, EPFL (2013)
53.
Zurück zum Zitat Sandroff, C.J., Weitz, D.A., Chung, J.C., Herschbach, D.R.: Charge transfer from tetrathiafulvalene to silver and gold surfaces studied by surface-enhanced raman scattering. J. Phys. Chem. 87, 2127–2133 (1983)CrossRef Sandroff, C.J., Weitz, D.A., Chung, J.C., Herschbach, D.R.: Charge transfer from tetrathiafulvalene to silver and gold surfaces studied by surface-enhanced raman scattering. J. Phys. Chem. 87, 2127–2133 (1983)CrossRef
54.
Zurück zum Zitat Weitz, D., Lin, M., Sandroff, C.: Colloidal aggregation revisited: new insights based on fractal structure and surface-enhanced raman scattering. Surf. Sci. 158, 147–164 (1985)CrossRef Weitz, D., Lin, M., Sandroff, C.: Colloidal aggregation revisited: new insights based on fractal structure and surface-enhanced raman scattering. Surf. Sci. 158, 147–164 (1985)CrossRef
55.
Zurück zum Zitat Kuo, T.-C., Hsu, T.-C., Liu, Y.-C., Yang, K.-H.: Size-controllable synthesis of surface-enhanced raman scattering-active gold nanoparticles coated on TiO2. Analyst 137, 3847–3853 (2012)CrossRef Kuo, T.-C., Hsu, T.-C., Liu, Y.-C., Yang, K.-H.: Size-controllable synthesis of surface-enhanced raman scattering-active gold nanoparticles coated on TiO2. Analyst 137, 3847–3853 (2012)CrossRef
56.
Zurück zum Zitat Hong, S., Li, X.: Optimal size of gold nanoparticles for surface-enhanced raman spectroscopy under different conditions. J. Nanomater. 2013, 1–9 (2013) Hong, S., Li, X.: Optimal size of gold nanoparticles for surface-enhanced raman spectroscopy under different conditions. J. Nanomater. 2013, 1–9 (2013)
57.
Zurück zum Zitat De Melo, V.H.S., Zamarion, V.M., Araki, K., Toma, H.E.: New insights on surface-enhanced raman scattering based on controlled aggregation and spectroscopic studies, DFT calculations and symmetry analysis for 3,6-Bi-2-Pyridyl-1,2,4,5-Tetrazine adsorbed onto citrate-stabilized gold nanoparticles. J. Raman Spectrosc. 42, 644–652 (2011)CrossRef De Melo, V.H.S., Zamarion, V.M., Araki, K., Toma, H.E.: New insights on surface-enhanced raman scattering based on controlled aggregation and spectroscopic studies, DFT calculations and symmetry analysis for 3,6-Bi-2-Pyridyl-1,2,4,5-Tetrazine adsorbed onto citrate-stabilized gold nanoparticles. J. Raman Spectrosc. 42, 644–652 (2011)CrossRef
58.
Zurück zum Zitat Grasseschi, D., Ando, R.A., Toma, H.E., Zamarion, V.M.: Unraveling the nature of turkevich gold nanoparticles: the unexpected role of the dicarboxyketone species. RSC Adv. 5, 5716–5724 (2015)CrossRef Grasseschi, D., Ando, R.A., Toma, H.E., Zamarion, V.M.: Unraveling the nature of turkevich gold nanoparticles: the unexpected role of the dicarboxyketone species. RSC Adv. 5, 5716–5724 (2015)CrossRef
59.
Zurück zum Zitat Wuithschick, M., Birnbaum, A., Witte, S., Sztucki, M., Vainio, U., Pinna, N., Rademann, K., Emmerling, F., Kraehnert, R., Polte, J.: Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9, 7052–7071 (2015)CrossRef Wuithschick, M., Birnbaum, A., Witte, S., Sztucki, M., Vainio, U., Pinna, N., Rademann, K., Emmerling, F., Kraehnert, R., Polte, J.: Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9, 7052–7071 (2015)CrossRef
60.
Zurück zum Zitat Spruell, J.M., Coskun, A., Friedman, D.C., Forgan, R.S., Sarjeant, A.A., Trabolsi, A., Fahrenbach, A.C., Barin, G., Paxton, W.F., Dey, S.K., et al.: Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nat. Chem. 2, 870–879 (2010)CrossRef Spruell, J.M., Coskun, A., Friedman, D.C., Forgan, R.S., Sarjeant, A.A., Trabolsi, A., Fahrenbach, A.C., Barin, G., Paxton, W.F., Dey, S.K., et al.: Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nat. Chem. 2, 870–879 (2010)CrossRef
61.
Zurück zum Zitat Coskun, A., Spruell, J.M., Barin, G., Fahrenbach, A.C., Forgan, R.S., Colvin, M.T., Carmieli, R., Benítez, D., Tkatchouk, E., Friedman, D.C., et al.: Mechanically stabilized tetrathiafulvalene radical dimers. J. Am. Chem. Soc. 133, 4538–4547 (2011)CrossRef Coskun, A., Spruell, J.M., Barin, G., Fahrenbach, A.C., Forgan, R.S., Colvin, M.T., Carmieli, R., Benítez, D., Tkatchouk, E., Friedman, D.C., et al.: Mechanically stabilized tetrathiafulvalene radical dimers. J. Am. Chem. Soc. 133, 4538–4547 (2011)CrossRef
62.
Zurück zum Zitat Siedle, A.R., Candela, G.A., Finnegan, T.F., Van Duyne, R.P., Cape, T., Kokoszka, G.F., Woyciejes, P.M., Hashmall, J.A.: Copper and gold metallotetrathiaethylenes. Inorg. Chem. 20, 2635–2640 (1981)CrossRef Siedle, A.R., Candela, G.A., Finnegan, T.F., Van Duyne, R.P., Cape, T., Kokoszka, G.F., Woyciejes, P.M., Hashmall, J.A.: Copper and gold metallotetrathiaethylenes. Inorg. Chem. 20, 2635–2640 (1981)CrossRef
63.
Zurück zum Zitat Puigmartí-Luis, J., Stadler, J., Schaffhauser, D., del Pino, Á.P., Burg, B.R., Dittrich, P.S.: Guided assembly of metal and hybrid conductive probes using floating potential dielectrophoresis. Nanoscale 3, 937 (2011)CrossRef Puigmartí-Luis, J., Stadler, J., Schaffhauser, D., del Pino, Á.P., Burg, B.R., Dittrich, P.S.: Guided assembly of metal and hybrid conductive probes using floating potential dielectrophoresis. Nanoscale 3, 937 (2011)CrossRef
64.
Zurück zum Zitat Ojea-Jiménez, I., Puntes, V.: Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions. J. Am. Chem. Soc. 131, 13320–13327 (2009)CrossRef Ojea-Jiménez, I., Puntes, V.: Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions. J. Am. Chem. Soc. 131, 13320–13327 (2009)CrossRef
65.
Zurück zum Zitat Wang, D., Tejerina, B., Lagzi, I., Kowalczyk, B., Grzybowski, B.A.: Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano 5, 530–536 (2011)CrossRef Wang, D., Tejerina, B., Lagzi, I., Kowalczyk, B., Grzybowski, B.A.: Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano 5, 530–536 (2011)CrossRef
66.
Zurück zum Zitat Le Ru, E.C., Blackie, E., Meyer, M., Etchegoin, P.G.: Surface enhanced raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007)CrossRef Le Ru, E.C., Blackie, E., Meyer, M., Etchegoin, P.G.: Surface enhanced raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007)CrossRef
67.
Zurück zum Zitat Tripathi, A., Emmons, E.D., Fountain, A.W., Guicheteau, J.A., Moskovits, M., Christesen, S.D.: Critical role of adsorption equilibria on the determination of surface-enhanced raman enhancement. ACS Nano 9, 584–593 (2015)CrossRef Tripathi, A., Emmons, E.D., Fountain, A.W., Guicheteau, J.A., Moskovits, M., Christesen, S.D.: Critical role of adsorption equilibria on the determination of surface-enhanced raman enhancement. ACS Nano 9, 584–593 (2015)CrossRef
68.
Zurück zum Zitat Joseph, Y., Besnard, I., Rosenberger, M., Guse, B., Nothofer, H.-G., Wessels, J.M., Wild, U., Knop-Gericke, A., Su, D., Schlögl, R., et al.: Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties †. J. Phys. Chem. B 107, 7406–7413 (2003)CrossRef Joseph, Y., Besnard, I., Rosenberger, M., Guse, B., Nothofer, H.-G., Wessels, J.M., Wild, U., Knop-Gericke, A., Su, D., Schlögl, R., et al.: Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties †. J. Phys. Chem. B 107, 7406–7413 (2003)CrossRef
69.
Zurück zum Zitat Liu, W., Gao, X.: Reducing HAuCl(4) by the C(60) Dianion: C(60)-Directed self-assembly of gold nanoparticles into novel fullerene bound gold nanoassemblies. Nanotechnology 19, 405609 (2008)CrossRef Liu, W., Gao, X.: Reducing HAuCl(4) by the C(60) Dianion: C(60)-Directed self-assembly of gold nanoparticles into novel fullerene bound gold nanoassemblies. Nanotechnology 19, 405609 (2008)CrossRef
70.
Zurück zum Zitat Kaminska, I., Das, M.R., Coffinier, Y., Niedziolka-Jonsson, J., Woisel, P., Opallo, M., Szunerits, S., Boukherroub, R.: Preparation of graphene/tetrathiafulvalene nanocomposite switchable surfaces. Chem. Commun. (Camb). 48, 1221–1223 (2012) Kaminska, I., Das, M.R., Coffinier, Y., Niedziolka-Jonsson, J., Woisel, P., Opallo, M., Szunerits, S., Boukherroub, R.: Preparation of graphene/tetrathiafulvalene nanocomposite switchable surfaces. Chem. Commun. (Camb). 48, 1221–1223 (2012)
71.
Zurück zum Zitat Kim, Y., Jeong, C., Lee, Y., Choi, S.: Synthesis and characterization of tetrathiafulvalene (TTF) and (X = Cl, NO 3 and hexafluoroacetylacetonate). Bull. Korean Chem. Soc. 23, 1754–1758 (2002)CrossRef Kim, Y., Jeong, C., Lee, Y., Choi, S.: Synthesis and characterization of tetrathiafulvalene (TTF) and (X = Cl, NO 3 and hexafluoroacetylacetonate). Bull. Korean Chem. Soc. 23, 1754–1758 (2002)CrossRef
72.
Zurück zum Zitat Kim, Y.I., Hatfield, W.E.: Electrical, magnetic and spectroscopic properties of teetrathiafulvalene charge transfer compounds with iron, ruthenium, rhodium and iridium halides. Inorganica Chim. Acta 188, 15–24 (1991)CrossRef Kim, Y.I., Hatfield, W.E.: Electrical, magnetic and spectroscopic properties of teetrathiafulvalene charge transfer compounds with iron, ruthenium, rhodium and iridium halides. Inorganica Chim. Acta 188, 15–24 (1991)CrossRef
73.
Zurück zum Zitat Baltrusaitis, J., Cwiertny, D.M., Grassian, V.H.: Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Phys. Chem. Chem. Phys. 9, 5542 (2007)CrossRef Baltrusaitis, J., Cwiertny, D.M., Grassian, V.H.: Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Phys. Chem. Chem. Phys. 9, 5542 (2007)CrossRef
75.
Zurück zum Zitat Union, I., Pure, O.F., Chemistry, A.: The absolute electrode potential: an explanatory note (recommendations 1986). J. Electroanal. Chem. Interfacial Electrochem. 209, 417–428 (1986)CrossRef Union, I., Pure, O.F., Chemistry, A.: The absolute electrode potential: an explanatory note (recommendations 1986). J. Electroanal. Chem. Interfacial Electrochem. 209, 417–428 (1986)CrossRef
76.
Zurück zum Zitat Jeppesen, J.O., Nielsen, M.B., Becher, J.: Tetrathiafulvalene cyclophanes and cage molecules. Chem. Rev. 104, 5115–5131 (2004)CrossRef Jeppesen, J.O., Nielsen, M.B., Becher, J.: Tetrathiafulvalene cyclophanes and cage molecules. Chem. Rev. 104, 5115–5131 (2004)CrossRef
77.
Zurück zum Zitat Su, B., Girault, H.H.: Redox properties of self-assembled gold nanoclusters. J. Phys. Chem. B 109, 23925–23929 (2005)CrossRef Su, B., Girault, H.H.: Redox properties of self-assembled gold nanoclusters. J. Phys. Chem. B 109, 23925–23929 (2005)CrossRef
78.
Zurück zum Zitat Subramanian, V., Wolf, E.E., Kamat, P.V.: Catalysis with TiO2/Gold nanocomposites. effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 126, 4943–4950 (2004)CrossRef Subramanian, V., Wolf, E.E., Kamat, P.V.: Catalysis with TiO2/Gold nanocomposites. effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc. 126, 4943–4950 (2004)CrossRef
79.
Zurück zum Zitat Scanlon, M.D.M., Peljo, P., Mendez, M.A., Smirnov, E.A., Girault, H.H., Méndez, M.A., Smirnov, E.A., Girault, H.H.: Charging and discharging at the nanoscale: fermi level equilibration of metallic nanoparticles. Chem. Sci. 6, 2705–2720 (2015)CrossRef Scanlon, M.D.M., Peljo, P., Mendez, M.A., Smirnov, E.A., Girault, H.H., Méndez, M.A., Smirnov, E.A., Girault, H.H.: Charging and discharging at the nanoscale: fermi level equilibration of metallic nanoparticles. Chem. Sci. 6, 2705–2720 (2015)CrossRef
80.
Zurück zum Zitat Adamczyk, Z., Weroński, P.: Application of the DLVO theory for particle deposition problems. Adv. Colloid Interface Sci. 83, 137–226 (1999)CrossRef Adamczyk, Z., Weroński, P.: Application of the DLVO theory for particle deposition problems. Adv. Colloid Interface Sci. 83, 137–226 (1999)CrossRef
81.
Zurück zum Zitat Binks, B.P.: Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002)CrossRef Binks, B.P.: Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7, 21–41 (2002)CrossRef
82.
Zurück zum Zitat Patra, D., Sanyal, A., Rotello, V.M.: Colloidal microcapsules: self-assembly of nanoparticles at the liquid-liquid interface. Chem. Asian J. 5, 2442–2453 (2010)CrossRef Patra, D., Sanyal, A., Rotello, V.M.: Colloidal microcapsules: self-assembly of nanoparticles at the liquid-liquid interface. Chem. Asian J. 5, 2442–2453 (2010)CrossRef
83.
Zurück zum Zitat Milner, S.T., Joanny, J.F., Pincus, P.: Buckling of langmuir monolayers. Eur. Lett. 9, 495–500 (1989)CrossRef Milner, S.T., Joanny, J.F., Pincus, P.: Buckling of langmuir monolayers. Eur. Lett. 9, 495–500 (1989)CrossRef
84.
Zurück zum Zitat Schwartz, H., Harel, Y., Efrima, S.: Surface behavior and buckling of silver interfacial colloid films. Langmuir 17, 3884–3892 (2001)CrossRef Schwartz, H., Harel, Y., Efrima, S.: Surface behavior and buckling of silver interfacial colloid films. Langmuir 17, 3884–3892 (2001)CrossRef
85.
Zurück zum Zitat Bresme, F., Oettel, M.: Nanoparticles at fluid interfaces. J. Phys.: Condens. Matter 19, 413101 (2007) Bresme, F., Oettel, M.: Nanoparticles at fluid interfaces. J. Phys.: Condens. Matter 19, 413101 (2007)
86.
Zurück zum Zitat Hansen, F.K.: Surface-tension by image-analysis—fast and automatic measurements of pendant and sessile drops and bubbles. J. Colloid Interface Sci. 160, 209–217 (1993)CrossRef Hansen, F.K.: Surface-tension by image-analysis—fast and automatic measurements of pendant and sessile drops and bubbles. J. Colloid Interface Sci. 160, 209–217 (1993)CrossRef
87.
Zurück zum Zitat Du, K., Glogowski, E., Emrick, T., Russell, T.P., Dinsmore, A.D.: Adsorption energy of nano- and microparticles at liquid-liquid interfaces. Langmuir 26, 12518–12522 (2010)CrossRef Du, K., Glogowski, E., Emrick, T., Russell, T.P., Dinsmore, A.D.: Adsorption energy of nano- and microparticles at liquid-liquid interfaces. Langmuir 26, 12518–12522 (2010)CrossRef
88.
Zurück zum Zitat Park, Y.-K., Park, S.: Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface. Chem. Mater. 20, 2388–2393 (2008)CrossRef Park, Y.-K., Park, S.: Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface. Chem. Mater. 20, 2388–2393 (2008)CrossRef
89.
Zurück zum Zitat Lee, K.Y.C.: Collapse mechanisms of langmuir monolayers. Annu. Rev. Phys. Chem. 59, 771–791 (2008)CrossRef Lee, K.Y.C.: Collapse mechanisms of langmuir monolayers. Annu. Rev. Phys. Chem. 59, 771–791 (2008)CrossRef
90.
Zurück zum Zitat Tchoreloff, P., Gulik, A., Denizot, B., Proust, J.E., Puisieux, F.: A structural study of interfacial phospholipid and lung surfactant layers by transmission electron microscopy after blodgett sampling: influence of surface pressure and temperature. Chem. Phys. Lipids 59, 151–165 (1991)CrossRef Tchoreloff, P., Gulik, A., Denizot, B., Proust, J.E., Puisieux, F.: A structural study of interfacial phospholipid and lung surfactant layers by transmission electron microscopy after blodgett sampling: influence of surface pressure and temperature. Chem. Phys. Lipids 59, 151–165 (1991)CrossRef
91.
Zurück zum Zitat Schultz, D.G., Lin, X.-M., Li, D., Gebhardt, J., Meron, M., Viccaro, P.J., Lin, B.: Structure, wrinkling, and reversibility of langmuir monolayers of gold nanoparticles. J. Phys. Chem. B 110, 24522–24529 (2006)CrossRef Schultz, D.G., Lin, X.-M., Li, D., Gebhardt, J., Meron, M., Viccaro, P.J., Lin, B.: Structure, wrinkling, and reversibility of langmuir monolayers of gold nanoparticles. J. Phys. Chem. B 110, 24522–24529 (2006)CrossRef
92.
Zurück zum Zitat Gopal, A., Lee, K.Y.C.: Morphology and collapse transitions in binary phospholipid monolayers. J. Phys. Chem. B 105, 10348–10354 (2001)CrossRef Gopal, A., Lee, K.Y.C.: Morphology and collapse transitions in binary phospholipid monolayers. J. Phys. Chem. B 105, 10348–10354 (2001)CrossRef
93.
Zurück zum Zitat Takamoto, D.Y., Lipp, M.M., von Nahmen, A, Lee, K.Y., Waring, A.J., Zasadzinski, J.A.: Interaction of lung surfactant proteins with anionic phospholipids. Biophys. J. 81, 153–169 (2001)CrossRef Takamoto, D.Y., Lipp, M.M., von Nahmen, A, Lee, K.Y., Waring, A.J., Zasadzinski, J.A.: Interaction of lung surfactant proteins with anionic phospholipids. Biophys. J. 81, 153–169 (2001)CrossRef
Metadaten
Titel
Self-Assembly of Nanoparticles into Gold Metal Liquid-like Droplets (MeLLDs)
verfasst von
Dr. Evgeny Smirnov
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-77914-0_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.