Skip to main content

2020 | OriginalPaper | Buchkapitel

Self-explaining AI as an Alternative to Interpretable AI

verfasst von : Daniel C. Elton

Erschienen in: Artificial General Intelligence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ability to explain decisions made by AI systems is highly sought after, especially in domains where human lives are at stake such as medicine or autonomous vehicles. While it is often possible to approximate the input-output relations of deep neural networks with a few human-understandable rules, the discovery of the double descent phenomena suggests that such approximations do not accurately capture the mechanism by which deep neural networks work. Double descent indicates that deep neural networks typically operate by smoothly interpolating between data points rather than by extracting a few high level rules. As a result, neural networks trained on complex real world data are inherently hard to interpret and prone to failure if asked to extrapolate. To show how we might be able to trust AI despite these problems we introduce the concept of self-explaining AI. Self-explaining AIs are capable of providing a human-understandable explanation of each decision along with confidence levels for both the decision and explanation. Some difficulties with this approach along with possible solutions are sketched. Finally, we argue it is important that deep learning based systems include a “warning light” based on techniques from applicability domain analysis to warn the user if a model is asked to extrapolate outside its training distribution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that this sort of approach should not be taken as quantifying “information flow” in the network. In fact, since the output of units is continuous, the amount of information which can flow through the network is infinite (for discussion and how to recover the concept of “information flow” in neural networks see [22]). What we propose to measure is the mutual information over the data distribution used.
 
Literatur
1.
Zurück zum Zitat Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems NIPS 2018, pp. 9525–9536. Curran Associates Inc., Red Hook (2018) Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems NIPS 2018, pp. 9525–9536. Curran Associates Inc., Red Hook (2018)
2.
Zurück zum Zitat Ahmad, M.A., Eckert, C., Teredesai, A.: Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics - BCB 2018. ACM Press (2018) Ahmad, M.A., Eckert, C., Teredesai, A.: Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics - BCB 2018. ACM Press (2018)
4.
Zurück zum Zitat Alvarez-Melis, D., Jaakkola, T.S.: Towards robust interpretability with self-explaining neural networks. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems NIPS 2018, pp. 7786–7795. Curran Associates Inc., Red Hook (2018) Alvarez-Melis, D., Jaakkola, T.S.: Towards robust interpretability with self-explaining neural networks. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems NIPS 2018, pp. 7786–7795. Curran Associates Inc., Red Hook (2018)
5.
Zurück zum Zitat Arya, V., et al.: One explanation does not fit all: a toolkit and taxonomy of AI explainability techniques. arXiv eprints: 1909.03012 (2019) Arya, V., et al.: One explanation does not fit all: a toolkit and taxonomy of AI explainability techniques. arXiv eprints: 1909.03012 (2019)
6.
Zurück zum Zitat Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956)CrossRef Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956)CrossRef
7.
Zurück zum Zitat Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)CrossRef Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)CrossRef
8.
Zurück zum Zitat Barnes, B.C., et al.: Machine learning of energetic material properties. arXiv eprints: 1807.06156 (2018) Barnes, B.C., et al.: Machine learning of energetic material properties. arXiv eprints: 1807.06156 (2018)
9.
Zurück zum Zitat Beede, E., et al.: A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems CHI 2020, pp. 1–12. Association for Computing Machinery, New York (2020) Beede, E., et al.: A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems CHI 2020, pp. 1–12. Association for Computing Machinery, New York (2020)
10.
Zurück zum Zitat Belkin, M., Hsu, D., Ma, S., Mandal, S.: Reconciling modern machine-learning practice and the classical bias–variance trade-off. Proc. Natl. Acad. Sci. 116(32), 15849–15854 (2019)MathSciNetCrossRef Belkin, M., Hsu, D., Ma, S., Mandal, S.: Reconciling modern machine-learning practice and the classical bias–variance trade-off. Proc. Natl. Acad. Sci. 116(32), 15849–15854 (2019)MathSciNetCrossRef
11.
Zurück zum Zitat Belkin, M., Hsu, D., Xu, J.: Two models of double descent for weak features. arXiv eprints: 1903.07571 (2019) Belkin, M., Hsu, D., Xu, J.: Two models of double descent for weak features. arXiv eprints: 1903.07571 (2019)
12.
Zurück zum Zitat Bordes, F., Berthier, T., Jorio, L.D., Vincent, P., Bengio, Y.: Iteratively unveiling new regions of interest in deep learning models. In: Medical Imaging with Deep Learning (MIDL) (2018) Bordes, F., Berthier, T., Jorio, L.D., Vincent, P., Bengio, Y.: Iteratively unveiling new regions of interest in deep learning models. In: Medical Imaging with Deep Learning (MIDL) (2018)
13.
Zurück zum Zitat Bostrom, N.: Superintelligence: Paths, Dangers, Strategies, 1st edn. Oxford University Press Inc., Oxford (2014) Bostrom, N.: Superintelligence: Paths, Dangers, Strategies, 1st edn. Oxford University Press Inc., Oxford (2014)
14.
Zurück zum Zitat Breiman, L.: Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16(3), 199–231 (2001)CrossRef Breiman, L.: Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16(3), 199–231 (2001)CrossRef
15.
Zurück zum Zitat Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.: This looks like that: deep learning for interpretable image recognition. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Canada, Vancouver, BC, pp. 8928–8939 (2019) Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.: This looks like that: deep learning for interpretable image recognition. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Canada, Vancouver, BC, pp. 8928–8939 (2019)
16.
Zurück zum Zitat Dombrowski, A.K., Alber, M., Anders, C.J., Ackermann, M., Müller, K.R., Kessel, P.: Explanations can be manipulated and geometry is to blame (2019) Dombrowski, A.K., Alber, M., Anders, C.J., Ackermann, M., Müller, K.R., Kessel, P.: Explanations can be manipulated and geometry is to blame (2019)
17.
Zurück zum Zitat Elton, D., Sandfort, V., Pickhardt, P.J., Summers, R.M.: Accurately identifying vertebral levels in large datasets. In: Hahn, H.K., Mazurowski, M.A. (eds.) Medical Imaging 2020: Computer-Aided Diagnosis. SPIE, March 2020 Elton, D., Sandfort, V., Pickhardt, P.J., Summers, R.M.: Accurately identifying vertebral levels in large datasets. In: Hahn, H.K., Mazurowski, M.A. (eds.) Medical Imaging 2020: Computer-Aided Diagnosis. SPIE, March 2020
18.
Zurück zum Zitat Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Technical report 1341, University of Montreal: also presented at the ICML 2009 Workshop on Learning Feature Hierarchies. Montréal, Canada (2009) Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Technical report 1341, University of Montreal: also presented at the ICML 2009 Workshop on Learning Feature Hierarchies. Montréal, Canada (2009)
19.
Zurück zum Zitat Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv eprintss: 1711.09784 (2017) Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv eprintss: 1711.09784 (2017)
20.
Zurück zum Zitat Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1050–1059. PMLR, New York, 20–22 June 2016 Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp. 1050–1059. PMLR, New York, 20–22 June 2016
22.
Zurück zum Zitat Goldfeld, Z., et al.: Estimating information flow in deep neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 2299–2308. PMLR, Long Beach, 09–15 June 2019 Goldfeld, Z., et al.: Estimating information flow in deep neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 2299–2308. PMLR, Long Beach, 09–15 June 2019
23.
Zurück zum Zitat Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv eprintss: 1412.6572 (2014) Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv eprintss: 1412.6572 (2014)
24.
Zurück zum Zitat Hasson, U., Nastase, S.A., Goldstein, A.: Direct fit to nature: an evolutionary perspective on biological and artificial neural networks. Neuron 105(3), 416–434 (2020)CrossRef Hasson, U., Nastase, S.A., Goldstein, A.: Direct fit to nature: an evolutionary perspective on biological and artificial neural networks. Neuron 105(3), 416–434 (2020)CrossRef
25.
Zurück zum Zitat Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: Proceedings of the 34th International Conference on Machine Learning ICML 2017, vol. 70, pp. 1885–1894. JMLR.org (2017) Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: Proceedings of the 34th International Conference on Machine Learning ICML 2017, vol. 70, pp. 1885–1894. JMLR.org (2017)
26.
Zurück zum Zitat Kulesza, T., Burnett, M., Wong, W.K., Stumpf, S.: Principles of explanatory debugging to personalize interactive machine learning. In: Proceedings of the 20th International Conference on Intelligent User Interfaces - IUI 2015. ACM Press (2015) Kulesza, T., Burnett, M., Wong, W.K., Stumpf, S.: Principles of explanatory debugging to personalize interactive machine learning. In: Proceedings of the 20th International Conference on Intelligent User Interfaces - IUI 2015. ACM Press (2015)
27.
Zurück zum Zitat LaLonde, R., Torigian, D., Bagci, U.: Encoding visual attributes in capsules for explainable medical diagnoses. arXiv e-prints: 1909.05926, September 2019 LaLonde, R., Torigian, D., Bagci, U.: Encoding visual attributes in capsules for explainable medical diagnoses. arXiv e-prints: 1909.05926, September 2019
28.
Zurück zum Zitat Lie, C.: Relevance in the eye of the beholder: diagnosing classifications based on visualised layerwise relevance propagation. Master’s thesis, Lund University, Sweden (2019) Lie, C.: Relevance in the eye of the beholder: diagnosing classifications based on visualised layerwise relevance propagation. Master’s thesis, Lund University, Sweden (2019)
29.
Zurück zum Zitat Lillicrap, T.P., Kording, K.P.: What does it mean to understand a neural network? arXiv eprints: 1907.06374 (2019) Lillicrap, T.P., Kording, K.P.: What does it mean to understand a neural network? arXiv eprints: 1907.06374 (2019)
31.
Zurück zum Zitat Lipton, Z.C.: The mythos of model interpretability. arXiv eprints: 1606.03490 (2016) Lipton, Z.C.: The mythos of model interpretability. arXiv eprints: 1606.03490 (2016)
32.
Zurück zum Zitat Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017) Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774. Curran Associates, Inc. (2017)
33.
Zurück zum Zitat McClure, P., et al.: Knowing what you know in brain segmentation using bayesian deep neural networks. Front. Neuroinform. 13, 67 (2019)CrossRef McClure, P., et al.: Knowing what you know in brain segmentation using bayesian deep neural networks. Front. Neuroinform. 13, 67 (2019)CrossRef
34.
Zurück zum Zitat Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. 116(44), 22071–22080 (2019)MathSciNetCrossRef Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. 116(44), 22071–22080 (2019)MathSciNetCrossRef
35.
Zurück zum Zitat Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.: Deep double descent: where bigger models and more data hurt. arXiv eprints: 1912.02292 (2019) Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I.: Deep double descent: where bigger models and more data hurt. arXiv eprints: 1912.02292 (2019)
36.
Zurück zum Zitat Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD. ACM Press (2016) Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD. ACM Press (2016)
37.
Zurück zum Zitat Richards, B.A., et al.: A deep learning framework for neuroscience. Nat. Neurosci. 22(11), 1761–1770 (2019)CrossRef Richards, B.A., et al.: A deep learning framework for neuroscience. Nat. Neurosci. 22(11), 1761–1770 (2019)CrossRef
38.
Zurück zum Zitat Rolnick, D., Kording, K.P.: Identifying weights and architectures of unknown ReLU networks. arXiv eprintss: 1910.00744 (2019) Rolnick, D., Kording, K.P.: Identifying weights and architectures of unknown ReLU networks. arXiv eprintss: 1910.00744 (2019)
39.
Zurück zum Zitat Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)CrossRef Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)CrossRef
40.
Zurück zum Zitat Sahigara, F., Mansouri, K., Ballabio, D., Mauri, A., Consonni, V., Todeschini, R.: Comparison of different approaches to define the applicability domain of QSAR models. Molecules 17(5), 4791–4810 (2012)CrossRef Sahigara, F., Mansouri, K., Ballabio, D., Mauri, A., Consonni, V., Todeschini, R.: Comparison of different approaches to define the applicability domain of QSAR models. Molecules 17(5), 4791–4810 (2012)CrossRef
41.
Zurück zum Zitat Shen, S., Han, S.X., Aberle, D.R., Bui, A.A., Hsu, W.: An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. Expert Syst. Appl. 128, 84–95 (2019)CrossRef Shen, S., Han, S.X., Aberle, D.R., Bui, A.A., Hsu, W.: An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. Expert Syst. Appl. 128, 84–95 (2019)CrossRef
42.
Zurück zum Zitat Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. arXiv eprintss: 1704.02685 (2017) Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. arXiv eprintss: 1704.02685 (2017)
43.
Zurück zum Zitat Spigler, S., Geiger, M., d’Ascoli, S., Sagun, L., Biroli, G., Wyart, M.: A jamming transition from under- to over-parametrization affects generalization in deep learning. J. Phys. A: Math. Theor. 52(47), 474001 (2019)MathSciNetCrossRef Spigler, S., Geiger, M., d’Ascoli, S., Sagun, L., Biroli, G., Wyart, M.: A jamming transition from under- to over-parametrization affects generalization in deep learning. J. Phys. A: Math. Theor. 52(47), 474001 (2019)MathSciNetCrossRef
44.
Zurück zum Zitat Sutre, E.T., Colliot, O., Dormont, D., Burgos, N.: Visualization approach to assess the robustness of neural networks for medical image classification. In: Proceedings of the SPIE: Medical Imaging (2020) Sutre, E.T., Colliot, O., Dormont, D., Burgos, N.: Visualization approach to assess the robustness of neural networks for medical image classification. In: Proceedings of the SPIE: Medical Imaging (2020)
45.
Zurück zum Zitat Swartout, W.R.: XPLAIN: a system for creating and explaining expert consulting programs. Artif. Intell. 21(3), 285–325 (1983)CrossRef Swartout, W.R.: XPLAIN: a system for creating and explaining expert consulting programs. Artif. Intell. 21(3), 285–325 (1983)CrossRef
46.
Zurück zum Zitat Torkkola, K.: Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res. 3, 1415–1438 (2003)MathSciNetMATH Torkkola, K.: Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res. 3, 1415–1438 (2003)MathSciNetMATH
47.
Zurück zum Zitat Yeh, C.K., Hsieh, C.Y., Suggala, A.S., Inouye, D.I., Ravikumar, P.: On the (in)fidelity and sensitivity for explanations. arXiv eprints: 1901.09392 (2019) Yeh, C.K., Hsieh, C.Y., Suggala, A.S., Inouye, D.I., Ravikumar, P.: On the (in)fidelity and sensitivity for explanations. arXiv eprints: 1901.09392 (2019)
49.
Zurück zum Zitat Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. arXiv eprints: 1611.03530 (2016) Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. arXiv eprints: 1611.03530 (2016)
50.
Zurück zum Zitat Zhang, Q., Cao, R., Shi, F., Wu, Y.N., Zhu, S.C.: Interpreting CNN knowledge via an explanatory graph. In: McIlraith, S.A., Weinberger, K.Q. (eds.) AAAI, pp. 4454–4463. AAAI Press (2018) Zhang, Q., Cao, R., Shi, F., Wu, Y.N., Zhu, S.C.: Interpreting CNN knowledge via an explanatory graph. In: McIlraith, S.A., Weinberger, K.Q. (eds.) AAAI, pp. 4454–4463. AAAI Press (2018)
Metadaten
Titel
Self-explaining AI as an Alternative to Interpretable AI
verfasst von
Daniel C. Elton
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-52152-3_10

Premium Partner