Skip to main content
Erschienen in: Journal of Materials Science 11/2019

04.03.2019 | Polymers

Self-healing alginate hydrogel based on dynamic acylhydrazone and multiple hydrogen bonds

verfasst von: Liyuan Qiao, Chengde Liu, Cheng Liu, Liquan Yang, Manxia Zhang, Wentao Liu, Jinyan Wang, Xigao Jian

Erschienen in: Journal of Materials Science | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dialdehyde-terminated PEG (PEG–CHO) and adipic dihydrazide-modified alginate (ALG-ADH) was developed to provide aldehyde and hydrazide active sites, respectively, and thus to obtain dynamic acylhydrazone bonds, which endow alginate hydrogel with excellent self-healing property. Different concentrations of cross-linking agent have been added, and their influence on the structure, morphology, mechanical properties and self-healing performance has been evaluated. The gelation kinetics, shear performance and compressive property have been investigated in detail. The hydrogel with 5% cross-linking agent exhibited the highest mechanical performance, with the shear modulus of 0.234 MPa and compressive modulus of 0.288 MPa. Due to dynamic acylhydrazone and multiple hydrogen bonds, the hydrogels have demonstrated excellent self-healing properties. After self-healing process, the hydrogel has retained 84.4% of the original tensile modulus. The as-prepared alginate hydrogel was molded into different shapes to exhibit the excellent plasticity. Moreover, when tetracycline hydrochloride was loaded into the hydrogel system as a model drug, the modified alginate hydrogel demonstrated the fastest drug release rate at pH = 7.4. It is suggested that the self-healing alginate hydrogel has a great potential in drug delivery, such as targeted drug release in intestinal treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Taylor DL, Panhuis MIH (2016) Self-healing hydrogels. Adv Mater 28:9060–9093CrossRef Taylor DL, Panhuis MIH (2016) Self-healing hydrogels. Adv Mater 28:9060–9093CrossRef
2.
Zurück zum Zitat Wu J, Han S, Yang T et al (2018) Highly stretchable and transparent thermistor based on self-healing double network hydrogel. ACS Appl Mater Interfaces 10:19097–19105CrossRef Wu J, Han S, Yang T et al (2018) Highly stretchable and transparent thermistor based on self-healing double network hydrogel. ACS Appl Mater Interfaces 10:19097–19105CrossRef
5.
Zurück zum Zitat Huang Q, Zou Y, Arno MC et al (2017) Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 46:6255–6275CrossRef Huang Q, Zou Y, Arno MC et al (2017) Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 46:6255–6275CrossRef
6.
Zurück zum Zitat Zhou X, Guo B, Zhang L, Hu G-H (2017) Progress in bio-inspired sacrificial bonds in artificial polymeric materials. Chem Soc Rev 46:6301–6329CrossRef Zhou X, Guo B, Zhang L, Hu G-H (2017) Progress in bio-inspired sacrificial bonds in artificial polymeric materials. Chem Soc Rev 46:6301–6329CrossRef
7.
Zurück zum Zitat Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005CrossRef Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005CrossRef
8.
Zurück zum Zitat Chen Q, Zhu L, Chen H et al (2015) A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv Funct Mater 25:1598–1607CrossRef Chen Q, Zhu L, Chen H et al (2015) A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv Funct Mater 25:1598–1607CrossRef
9.
Zurück zum Zitat Chu CW, Ravoo BJ (2017) Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release via host-guest interaction. Chem Commun 53:12450–12453CrossRef Chu CW, Ravoo BJ (2017) Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release via host-guest interaction. Chem Commun 53:12450–12453CrossRef
10.
Zurück zum Zitat Jia YG, Jin J, Liu S, Ren L, Luo J, Zhu XX (2018) Self-healing hydrogels of low molecular weight poly(vinyl alcohol) assembled by host-guest recognition. Biomacromol 19:626–632CrossRef Jia YG, Jin J, Liu S, Ren L, Luo J, Zhu XX (2018) Self-healing hydrogels of low molecular weight poly(vinyl alcohol) assembled by host-guest recognition. Biomacromol 19:626–632CrossRef
11.
Zurück zum Zitat Crupi V, Fontana A, Majolino D et al (2014) Hydrogen-bond dynamics of water confined in cyclodextrin nanosponges hydrogel. J Incl Phenom Macrocycl Chem 80:69–75CrossRef Crupi V, Fontana A, Majolino D et al (2014) Hydrogen-bond dynamics of water confined in cyclodextrin nanosponges hydrogel. J Incl Phenom Macrocycl Chem 80:69–75CrossRef
12.
Zurück zum Zitat Dai X, Zhang Y, Gao L et al (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 27:3566–3571CrossRef Dai X, Zhang Y, Gao L et al (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 27:3566–3571CrossRef
13.
Zurück zum Zitat Bastings MMC, Koudstaal S, Kieltyka RE et al (2014) A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv Healthc Mater 3:70–78CrossRef Bastings MMC, Koudstaal S, Kieltyka RE et al (2014) A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv Healthc Mater 3:70–78CrossRef
14.
Zurück zum Zitat Jeon I, Cui J, Illeperuma WR, Aizenberg J, Vlassak JJ (2016) Extremely stretchable and fast self-healing hydrogels. Adv Mater 28:4678–4683CrossRef Jeon I, Cui J, Illeperuma WR, Aizenberg J, Vlassak JJ (2016) Extremely stretchable and fast self-healing hydrogels. Adv Mater 28:4678–4683CrossRef
15.
Zurück zum Zitat Mayr J, Saldias C, Diaz Diaz D (2018) Release of small bioactive molecules from physical gels. Chem Soc Rev 47:1484–1515CrossRef Mayr J, Saldias C, Diaz Diaz D (2018) Release of small bioactive molecules from physical gels. Chem Soc Rev 47:1484–1515CrossRef
17.
Zurück zum Zitat Guo Z, Ma W, Gu H et al (2017) pH-Switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds. Soft Matter 13:7371–7380CrossRef Guo Z, Ma W, Gu H et al (2017) pH-Switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds. Soft Matter 13:7371–7380CrossRef
18.
Zurück zum Zitat Yu F, Cao X, Du J, Wang G, Chen X (2015) Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels-Alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces 7:24023–24031CrossRef Yu F, Cao X, Du J, Wang G, Chen X (2015) Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels-Alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces 7:24023–24031CrossRef
19.
Zurück zum Zitat Tseng TC, Hsieh FY, Theato P, Wei Y, Hsu Sh (2017) Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. Biomaterials 133:20–28CrossRef Tseng TC, Hsieh FY, Theato P, Wei Y, Hsu Sh (2017) Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. Biomaterials 133:20–28CrossRef
20.
Zurück zum Zitat Guan Y, Zhang Y (2013) Boronic acid-containing hydrogels: synthesis and their applications. Chem Soc Rev 42:8106–8121CrossRef Guan Y, Zhang Y (2013) Boronic acid-containing hydrogels: synthesis and their applications. Chem Soc Rev 42:8106–8121CrossRef
21.
Zurück zum Zitat Kabb CP, O’Bryan CS, Deng CC, Angelini TE, Sumerlin BS (2018) Photoreversible covalent hydrogels for soft-matter additive manufacturing. ACS Appl Mater Interfaces 10:16793–16801CrossRef Kabb CP, O’Bryan CS, Deng CC, Angelini TE, Sumerlin BS (2018) Photoreversible covalent hydrogels for soft-matter additive manufacturing. ACS Appl Mater Interfaces 10:16793–16801CrossRef
22.
Zurück zum Zitat Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRef Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRef
23.
Zurück zum Zitat Liu FG, Li RR, Mao LK, Gao YX (2018) Ethanol-induced composite hydrogel based on propylene glycol alginate and zein: formation, characterization and application. Food Chem 255:390–398CrossRef Liu FG, Li RR, Mao LK, Gao YX (2018) Ethanol-induced composite hydrogel based on propylene glycol alginate and zein: formation, characterization and application. Food Chem 255:390–398CrossRef
24.
Zurück zum Zitat Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463:127–136CrossRef Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463:127–136CrossRef
25.
Zurück zum Zitat Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305CrossRef Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305CrossRef
26.
Zurück zum Zitat Chang D, Lei J, Cui H et al (2012) Disulfide cross-linked nanospheres from sodium alginate derivative for inflammatory bowel disease: preparation, characterization, and in vitro drug release behavior. Carbohyd Polym 88:663–669CrossRef Chang D, Lei J, Cui H et al (2012) Disulfide cross-linked nanospheres from sodium alginate derivative for inflammatory bowel disease: preparation, characterization, and in vitro drug release behavior. Carbohyd Polym 88:663–669CrossRef
29.
Zurück zum Zitat Chaudhuri O, Gu L, Klumpers D et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–336CrossRef Chaudhuri O, Gu L, Klumpers D et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–336CrossRef
30.
Zurück zum Zitat Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656CrossRef Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31:4639–4656CrossRef
31.
Zurück zum Zitat Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888CrossRef Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888CrossRef
32.
Zurück zum Zitat Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRef Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRef
34.
Zurück zum Zitat Lee TT, Garcia JR, Paez JI et al (2015) Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat Mater 14:352–360CrossRef Lee TT, Garcia JR, Paez JI et al (2015) Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat Mater 14:352–360CrossRef
35.
Zurück zum Zitat Schieber C, Bestetti A, Lim JP et al (2012) Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using Cyclooctyne click chemistry. Angew Chem Int Ed 51:10523–10527CrossRef Schieber C, Bestetti A, Lim JP et al (2012) Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using Cyclooctyne click chemistry. Angew Chem Int Ed 51:10523–10527CrossRef
36.
Zurück zum Zitat Gattásasfura KM, Stabler CL (2009) Chemoselective cross-linking and functionalization of alginate via Staudinger ligation. Biomacromol 10:3122–3129CrossRef Gattásasfura KM, Stabler CL (2009) Chemoselective cross-linking and functionalization of alginate via Staudinger ligation. Biomacromol 10:3122–3129CrossRef
37.
Zurück zum Zitat Passemard S, Szabo L, Noverraz F et al (2017) Synthesis strategies to extend the variety of alginate-based hybrid hydrogels for cell microencapsulation. Biomacromol 18:2747–2755CrossRef Passemard S, Szabo L, Noverraz F et al (2017) Synthesis strategies to extend the variety of alginate-based hybrid hydrogels for cell microencapsulation. Biomacromol 18:2747–2755CrossRef
38.
Zurück zum Zitat Zhang Y, Tao L, Li S, Wei Y (2011) Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromol 12:2894–2901CrossRef Zhang Y, Tao L, Li S, Wei Y (2011) Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromol 12:2894–2901CrossRef
39.
Zurück zum Zitat Wang X, Chang L, Hu J et al (2017) Self-healable hydrogels with crosslinking induced thermo-responsiveness and regulated properties from water soluble polymer. Polymer 131:202–208CrossRef Wang X, Chang L, Hu J et al (2017) Self-healable hydrogels with crosslinking induced thermo-responsiveness and regulated properties from water soluble polymer. Polymer 131:202–208CrossRef
40.
Zurück zum Zitat Chang R, An H, Li X et al (2017) Self-healable polymer gels with multi-responsiveness of gel-sol-gel transition and degradability. Polym Chem 8:1263–1271CrossRef Chang R, An H, Li X et al (2017) Self-healable polymer gels with multi-responsiveness of gel-sol-gel transition and degradability. Polym Chem 8:1263–1271CrossRef
41.
Zurück zum Zitat Wang X, Bian G, Zhang M et al (2017) Self-healable hydrogels with cross-linking induced thermo-responsiveness and multi-triggered gel-sol-gel transition. Polym Chem 8:2872–2880CrossRef Wang X, Bian G, Zhang M et al (2017) Self-healable hydrogels with cross-linking induced thermo-responsiveness and multi-triggered gel-sol-gel transition. Polym Chem 8:2872–2880CrossRef
42.
Zurück zum Zitat Gao C, Liu M, Chen J, Zhang X (2009) Preparation and controlled degradation of oxidized sodium alginate hydrogel. Polym Degrad Stab 94:1405–1410CrossRef Gao C, Liu M, Chen J, Zhang X (2009) Preparation and controlled degradation of oxidized sodium alginate hydrogel. Polym Degrad Stab 94:1405–1410CrossRef
43.
Zurück zum Zitat Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG (2009) Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30:6844–6853CrossRef Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG (2009) Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30:6844–6853CrossRef
44.
Zurück zum Zitat Yeo Y, Highley CB, Bellas E et al (2006) In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials 27:4698–4705CrossRef Yeo Y, Highley CB, Bellas E et al (2006) In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials 27:4698–4705CrossRef
45.
Zurück zum Zitat Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS (2007) The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28:975–983CrossRef Ito T, Yeo Y, Highley CB, Bellas E, Benitez CA, Kohane DS (2007) The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 28:975–983CrossRef
46.
Zurück zum Zitat Jia X, Colombo G, Padera R, Langer R, Kohane DS (2004) Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials 25:4797–4804CrossRef Jia X, Colombo G, Padera R, Langer R, Kohane DS (2004) Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials 25:4797–4804CrossRef
47.
Zurück zum Zitat Maciel D, Figueira P, Xiao S et al (2013) Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromol 14:3140–3146CrossRef Maciel D, Figueira P, Xiao S et al (2013) Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromol 14:3140–3146CrossRef
48.
Zurück zum Zitat Dankers PYW, Hermans TM, Baughman TW et al (2012) Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv Mater 24:2703–2709CrossRef Dankers PYW, Hermans TM, Baughman TW et al (2012) Hierarchical formation of supramolecular transient networks in water: a modular injectable delivery system. Adv Mater 24:2703–2709CrossRef
49.
Zurück zum Zitat Jeon O, Bouhadir KH, Mansour JM, Alsberg E (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734CrossRef Jeon O, Bouhadir KH, Mansour JM, Alsberg E (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734CrossRef
50.
Zurück zum Zitat Wei Z, Yang JH, Liu ZQ et al (2015) Novel Biocompatible Polysaccharide-Based Self-Healing Hydrogel. Adv Funct Mater 25:1352–1359CrossRef Wei Z, Yang JH, Liu ZQ et al (2015) Novel Biocompatible Polysaccharide-Based Self-Healing Hydrogel. Adv Funct Mater 25:1352–1359CrossRef
51.
Zurück zum Zitat Liu B, Wang Y, Miao Y et al (2018) Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin. Biomaterials 171:83–96CrossRef Liu B, Wang Y, Miao Y et al (2018) Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin. Biomaterials 171:83–96CrossRef
52.
Zurück zum Zitat Lin Q, Jiang X-M, Liu L et al (2017) A novel supramolecular organogel based on acylhydrazone functionalized pillar 5 arene acts as an I- responsive smart material. Soft Matter 13:7222–7226CrossRef Lin Q, Jiang X-M, Liu L et al (2017) A novel supramolecular organogel based on acylhydrazone functionalized pillar 5 arene acts as an I- responsive smart material. Soft Matter 13:7222–7226CrossRef
53.
Zurück zum Zitat Ye X, Li X, Shen Y, Chang G, Yang J, Gu Z (2017) Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer 108:348–360CrossRef Ye X, Li X, Shen Y, Chang G, Yang J, Gu Z (2017) Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer 108:348–360CrossRef
54.
Zurück zum Zitat Haring M, Rodriguez-Lopez J, Grijalvo S et al (2018) Isosteric substitution of 4H-1,2,4-triazole by 1H-1,2,3-triazole in isophthalic derivative enabled hydrogel formation for controlled drug delivery. Mol Pharm 15:2963–2972CrossRef Haring M, Rodriguez-Lopez J, Grijalvo S et al (2018) Isosteric substitution of 4H-1,2,4-triazole by 1H-1,2,3-triazole in isophthalic derivative enabled hydrogel formation for controlled drug delivery. Mol Pharm 15:2963–2972CrossRef
55.
Zurück zum Zitat Kim C-K, Lee E-J (1992) The controlled release of blue dextran from alginate beads. Int J Pharm 79:11–19CrossRef Kim C-K, Lee E-J (1992) The controlled release of blue dextran from alginate beads. Int J Pharm 79:11–19CrossRef
56.
Zurück zum Zitat Wells LA, Sheardown H (2007) Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique. Eur J Pharm Biopharm 65:329–335CrossRef Wells LA, Sheardown H (2007) Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique. Eur J Pharm Biopharm 65:329–335CrossRef
57.
Zurück zum Zitat Xu Y, Zhan C, Fan L, Wang L, Zheng H (2007) Preparation of dual crosslinked alginate–chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336:329–337CrossRef Xu Y, Zhan C, Fan L, Wang L, Zheng H (2007) Preparation of dual crosslinked alginate–chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336:329–337CrossRef
Metadaten
Titel
Self-healing alginate hydrogel based on dynamic acylhydrazone and multiple hydrogen bonds
verfasst von
Liyuan Qiao
Chengde Liu
Cheng Liu
Liquan Yang
Manxia Zhang
Wentao Liu
Jinyan Wang
Xigao Jian
Publikationsdatum
04.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03483-y

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Science 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.