2006 | OriginalPaper | Buchkapitel
Semicoercive Hemivariational Inequalities, Regularization Methods, Applications on Mechanics
verfasst von : Zdzisław Naniewicz
Erschienen in: Nonsmooth Mechanics of Solids
Verlag: Springer Vienna
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
An approach to semicoercive variational-hemivariational or hemivariational inequalities based on a recession technique introduced in (
Naniewicz 2003
), is developed. First, problems defined on vector-valued function spaces are considered under unilateral growth conditions imposed on nonlinear parts by making use of the Galerkin method. Second, a minimax method relying on Chang’s version of Mountain Pass Theorem for locally Lipschitz functionals (
Chang 1981
) is applied to study semicoercive hemivariational inequalities on vector valued function spaces. Third, the resonant problem governed by the
p
-Laplacian involving the unilateral growth condition is discussed. Some mechanical problems as exemplifications of the presented approach are shown.