Skip to main content

2017 | OriginalPaper | Buchkapitel

21. Shape Memory Alloys (SMAs) for Aerospace Applications

verfasst von : R. J. H. Wanhill, B. Ashok

Erschienen in: Aerospace Materials and Material Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shape memory alloys (SMAs) have the ability to ‘memorise’ or recover their previous form when subjected to thermal, thermomechanical or magnetic variations. This ability has resulted in a new class of materials for engineering applications in the aerospace, medical, automotive and home appliance sectors. This chapter surveys SMAs and the developments for aerospace applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Electrochem Soc 54:3819–3833 Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Electrochem Soc 54:3819–3833
2.
Zurück zum Zitat Greninger AB, Mooradian VG (1938) Strain transformation in metastable beta copper–zinc and beta copper–tin alloys. Trans AIME 128:337–368 Greninger AB, Mooradian VG (1938) Strain transformation in metastable beta copper–zinc and beta copper–tin alloys. Trans AIME 128:337–368
3.
Zurück zum Zitat Kurdjumov GV, Khandros LG (1949) First reports of the thermoelastic behaviour of the martensitic phase of Au–Cd alloys. Dokl Akad Nauk SSSR 66:211–213 Kurdjumov GV, Khandros LG (1949) First reports of the thermoelastic behaviour of the martensitic phase of Au–Cd alloys. Dokl Akad Nauk SSSR 66:211–213
4.
Zurück zum Zitat Chang LC, Read TA (1951) Plastic deformation and diffusionless phase changes in metals: the gold-cadmium beta phase. Trans AIME 191:47–52 Chang LC, Read TA (1951) Plastic deformation and diffusionless phase changes in metals: the gold-cadmium beta phase. Trans AIME 191:47–52
5.
Zurück zum Zitat Kauffman G, Mayo I (1996) The story of Nitinol: the serendipitous discovery of the memory metal and its applications. Chem Educ 2(2):1–21: Electronic Journal (S 1430–4171 (97) 02111-0) Kauffman G, Mayo I (1996) The story of Nitinol: the serendipitous discovery of the memory metal and its applications. Chem Educ 2(2):1–21: Electronic Journal (S 1430–4171 (97) 02111-0)
6.
Zurück zum Zitat Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. In: Lagoudas DC (ed) Chapter 1 in ‘Shape Memory Alloys, Modeling and Engineering Applications’. Springer Science+Business Media, LLC, New York, NY 10013, USA, pp 1–52 Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. In: Lagoudas DC (ed) Chapter 1 in ‘Shape Memory Alloys, Modeling and Engineering Applications’. Springer Science+Business Media, LLC, New York, NY 10013, USA, pp 1–52
7.
Zurück zum Zitat Taha OMA, Bahrom MB, Taha OY, Aris MS (2015) Experimental study on two way shape memory effect training procedure for NiTiNOL shape memory alloys. ARPN J Eng Appl Sci 10(17):7847–7851 Taha OMA, Bahrom MB, Taha OY, Aris MS (2015) Experimental study on two way shape memory effect training procedure for NiTiNOL shape memory alloys. ARPN J Eng Appl Sci 10(17):7847–7851
8.
Zurück zum Zitat Hodgson DE, Wu MH, Biermann RJ (1990) Shape memory alloys. In: ASM Handbook: Volume 2: Properties and selection: nonferrous alloys and special-purpose materials. ASM International, Materials Park, OH 44073-0002, USA, pp 897–902 Hodgson DE, Wu MH, Biermann RJ (1990) Shape memory alloys. In: ASM Handbook: Volume 2: Properties and selection: nonferrous alloys and special-purpose materials. ASM International, Materials Park, OH 44073-0002, USA, pp 897–902
9.
Zurück zum Zitat Novotny M, Kilpi J (2001) Shape memory alloys. Referenced in Gök MO, Bilir MZ, Gürcüm BH (2015) Shape-memory applications in textile design. Procedia—Social and behavioural Sciences, vol 195, pp 2160–2169 Novotny M, Kilpi J (2001) Shape memory alloys. Referenced in Gök MO, Bilir MZ, Gürcüm BH (2015) Shape-memory applications in textile design. Procedia—Social and behavioural Sciences, vol 195, pp 2160–2169
10.
Zurück zum Zitat Melton KN (1990) Ni-Ti based shape memory alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 21–35 Melton KN (1990) Ni-Ti based shape memory alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 21–35
11.
Zurück zum Zitat Duerig TW, Pelton AR (1994) Ti–Ni shape memory alloys. In: Boyer R, Welsch G, Collings EW (eds) Materials Properties Handbook: Titanium alloys. ASM International, Materials Park, OH 44073-0002, USA, pp 1035–1048 Duerig TW, Pelton AR (1994) Ti–Ni shape memory alloys. In: Boyer R, Welsch G, Collings EW (eds) Materials Properties Handbook: Titanium alloys. ASM International, Materials Park, OH 44073-0002, USA, pp 1035–1048
12.
Zurück zum Zitat Nam TH, Saburi T, Nakata Y, Shimizu K (1990) Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys. Mater Trans Jpn Inst Met 31(12):1050–1056 Nam TH, Saburi T, Nakata Y, Shimizu K (1990) Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys. Mater Trans Jpn Inst Met 31(12):1050–1056
13.
Zurück zum Zitat He W, Min G, Yin Y, Tolochko O (2009) Martensitic transformation and mechanical properties of Ti-rich Ti-Ni-Cu melt-spun ribbon. Trans Nonferrous Met Soc China 19:1464–1469CrossRef He W, Min G, Yin Y, Tolochko O (2009) Martensitic transformation and mechanical properties of Ti-rich Ti-Ni-Cu melt-spun ribbon. Trans Nonferrous Met Soc China 19:1464–1469CrossRef
14.
Zurück zum Zitat Moberly WJ, Melton KN (1990) Ni-Ti-Cu shape memory alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 46–57 Moberly WJ, Melton KN (1990) Ni-Ti-Cu shape memory alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 46–57
15.
Zurück zum Zitat Simpson JA, Melton K, Duerig T (1988) Nickel/titanium/niobium shape memory alloy and article. United States Patent 4,770,725, 13 Sept 1988 Simpson JA, Melton K, Duerig T (1988) Nickel/titanium/niobium shape memory alloy and article. United States Patent 4,770,725, 13 Sept 1988
16.
Zurück zum Zitat Lindquist PG, Wayman CM (1990) Shape memory and transformation behavior of martensitic Ti-Pd-Ni and Ti-Pt-Ni alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 58–68 Lindquist PG, Wayman CM (1990) Shape memory and transformation behavior of martensitic Ti-Pd-Ni and Ti-Pt-Ni alloys. In: Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK, pp 58–68
17.
Zurück zum Zitat Bigelow G, Noebe R, Padula II S, Garg A, Olson D (2006) Development and characterization of improved NiTiPd high-temperature shape-memory alloys by solid solution strengthening and thermomechanical processing. In: Berg B, Mitchell MR, Proft J (eds) SMST-2006, Shape memory and superelastic technologies. ASM International, Materials Park, OH 44073-0002, USA, pp 113–132 Bigelow G, Noebe R, Padula II S, Garg A, Olson D (2006) Development and characterization of improved NiTiPd high-temperature shape-memory alloys by solid solution strengthening and thermomechanical processing. In: Berg B, Mitchell MR, Proft J (eds) SMST-2006, Shape memory and superelastic technologies. ASM International, Materials Park, OH 44073-0002, USA, pp 113–132
18.
Zurück zum Zitat Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef
19.
Zurück zum Zitat Boller C, Brand W, Brinson LC, Huang M (1996) Shape memory alloys and their applications. In: Smart structures and materials: implications for military aircraft of new generation. AGARD Lecture Series 205, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, pp 2-1–2-13 Boller C, Brand W, Brinson LC, Huang M (1996) Shape memory alloys and their applications. In: Smart structures and materials: implications for military aircraft of new generation. AGARD Lecture Series 205, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, pp 2-1–2-13
20.
Zurück zum Zitat Hartl DJ, Mabe JH, Benafan O, Coda A, Conduit B, Padan R, Van Doren B (2015) Standardization of shape memory alloy test methods toward certification of aerospace applications. Smart Mater Struct 24:082001 (6 p) Hartl DJ, Mabe JH, Benafan O, Coda A, Conduit B, Padan R, Van Doren B (2015) Standardization of shape memory alloy test methods toward certification of aerospace applications. Smart Mater Struct 24:082001 (6 p)
21.
Zurück zum Zitat Hartl D, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G, J Aerosp Eng 221(4):535–552 Hartl D, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G, J Aerosp Eng 221(4):535–552
22.
Zurück zum Zitat Lagoudas DC, Miller DA, Rong L, Kumar PK (2009) Thermomechanical fatigue of shape memory alloys. Smart Mater Struct 18:085021 (12 p) Lagoudas DC, Miller DA, Rong L, Kumar PK (2009) Thermomechanical fatigue of shape memory alloys. Smart Mater Struct 18:085021 (12 p)
23.
Zurück zum Zitat Barbarino S, Bilgen O, Ajaj RM, Friswell MI, Inman DJ (2011) A review of morphing aircraft. J Intell Mater Syst Struct 22:823–877CrossRef Barbarino S, Bilgen O, Ajaj RM, Friswell MI, Inman DJ (2011) A review of morphing aircraft. J Intell Mater Syst Struct 22:823–877CrossRef
24.
Zurück zum Zitat Barbarino S, Saavedra Flores EI, Ajaj RM, Dayyani I, Friswell MI (2014) A review on shape memory alloys with applications to morphing aircraft. Smart Mater Struct 23:063001 (19 p) Barbarino S, Saavedra Flores EI, Ajaj RM, Dayyani I, Friswell MI (2014) A review on shape memory alloys with applications to morphing aircraft. Smart Mater Struct 23:063001 (19 p)
25.
Zurück zum Zitat Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23(1):11–19CrossRef Huang W (2002) On the selection of shape memory alloys for actuators. Mater Des 23(1):11–19CrossRef
26.
27.
Zurück zum Zitat Lazansky C, Christiansen S (2006) Problems and product improvements in a qualified, flight heritage product. In: 38th Aerospace Mechanisms Symposium. Compiled by Boesiger EA, NASA Conference Proceedings NASA/CP-2006-214290, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320, USA, pp 75–88 Lazansky C, Christiansen S (2006) Problems and product improvements in a qualified, flight heritage product. In: 38th Aerospace Mechanisms Symposium. Compiled by Boesiger EA, NASA Conference Proceedings NASA/CP-2006-214290, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320, USA, pp 75–88
28.
Zurück zum Zitat Willey CE, Huettl B, Hill SW (2001) Design and development of a miniature mechanisms tool-kit for micro spacecraft. In: 35th Aerospace Mechanisms Symposium. Compiled by Boesiger EA, NASA Conference Proceedings NASA/CP-2001-209626, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320, USA, pp 287–300 Willey CE, Huettl B, Hill SW (2001) Design and development of a miniature mechanisms tool-kit for micro spacecraft. In: 35th Aerospace Mechanisms Symposium. Compiled by Boesiger EA, NASA Conference Proceedings NASA/CP-2001-209626, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320, USA, pp 287–300
29.
Zurück zum Zitat Huang W, Pellegrino S, Bashford DP (1996) Shape memory alloy actuators for deployable structures. In: Burke WR (ed) Proceedings of an International Conference on Spacecraft Structures, Materials and Mechanical Testing. ESA SP-386, European Space Agency, Paris, France, pp 53–61 Huang W, Pellegrino S, Bashford DP (1996) Shape memory alloy actuators for deployable structures. In: Burke WR (ed) Proceedings of an International Conference on Spacecraft Structures, Materials and Mechanical Testing. ESA SP-386, European Space Agency, Paris, France, pp 53–61
30.
Zurück zum Zitat Jenkins PP, Landis GA (1995) A rotating arm using shape-memory alloy. In: Schneider WC (ed) 29th Aerospace Mechanisms Symposium. NASA Conference Publication 3293, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320 (formerly Linthicum Heights, MD 21090-2934), USA, pp 167–171 Jenkins PP, Landis GA (1995) A rotating arm using shape-memory alloy. In: Schneider WC (ed) 29th Aerospace Mechanisms Symposium. NASA Conference Publication 3293, NASA Center for AeroSpace Information (CASI), Hanover, MD 21076-1320 (formerly Linthicum Heights, MD 21090-2934), USA, pp 167–171
31.
Zurück zum Zitat Lagoudas DC, Kalmár-Nagy T, Lagoudas MZ (2010) Shape memory alloys for vibration isolation damping of large-scale space structures. Annual Report AFRL-OSR-VA-TR-2912-0440, Air Force Office of Scientific Research, Arlington, VA 22203, USA Lagoudas DC, Kalmár-Nagy T, Lagoudas MZ (2010) Shape memory alloys for vibration isolation damping of large-scale space structures. Annual Report AFRL-OSR-VA-TR-2912-0440, Air Force Office of Scientific Research, Arlington, VA 22203, USA
1.
Zurück zum Zitat Chen HR (ed) (2010) Shape memory alloys: manufacture, properties and applications. Nova Science Publishers, Inc., Hauppauge, NY 11788-3619, USA Chen HR (ed) (2010) Shape memory alloys: manufacture, properties and applications. Nova Science Publishers, Inc., Hauppauge, NY 11788-3619, USA
2.
Zurück zum Zitat Lagoudas DC (ed) (2008) Shape memory alloys, modeling and engineering applications. Springer Science+Business Media, LLC, New York, NY 10013, USA Lagoudas DC (ed) (2008) Shape memory alloys, modeling and engineering applications. Springer Science+Business Media, LLC, New York, NY 10013, USA
3.
Zurück zum Zitat Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge, UK Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge, UK
4.
Zurück zum Zitat Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) (1990) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK Duerig TW, Melton KN, Stöckel D, Wayman CM (eds) (1990) Engineering aspects of shape memory alloys. Butterworth Heinemann Ltd., London, UK
Metadaten
Titel
Shape Memory Alloys (SMAs) for Aerospace Applications
verfasst von
R. J. H. Wanhill
B. Ashok
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2134-3_21

    Premium Partner