Skip to main content
Erschienen in: Innovative Infrastructure Solutions 2/2021

01.06.2021 | Technical paper

Shear capacity assessment of steel fiber reinforced concrete beams using artificial neural network

verfasst von: Yasser Sharifi, Adel Moghbeli

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Incorporating steel fibers to the concrete members enhances the shear capacity. The shear capacity of steel fiber reinforced concrete (SFRC) beams is an important issue for designing the reinforced concrete structures. Due to numerous parameters that affect the shear capacity of SFRC beams, developing an exact equation to measure the shear resistance of SFRC beams is complicated. To present a more exact equation for shear capacity assessment of SFRC beams, compare to existing formulae the artificial neural networks (ANNs) developed. A series of reliable experimental data collected from the literature. A model-based ANN method for presenting an exact empirical formula developed. The accuracy of the developed formula is verified using several criteria, and a comparison study was carried out between the experimental data and the existing equations. It is understood that the obtained formula gives the most exact result among others. A sensitivity analysis based the Garson’s algorithm was executed to identify the most efficient variables.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tan KH, Murugappan K, Paramasivam P (1992) Shear behavior of steel fiber reinforced concrete beams. ACI Struct J 89(6):3–11 Tan KH, Murugappan K, Paramasivam P (1992) Shear behavior of steel fiber reinforced concrete beams. ACI Struct J 89(6):3–11
2.
Zurück zum Zitat Lim TY, Paramasivam P, Lee SL (1987) Shear and moment capacity of reinforced steel-fiber-concrete beams. Mag Conc Res 39(140):148–160 Lim TY, Paramasivam P, Lee SL (1987) Shear and moment capacity of reinforced steel-fiber-concrete beams. Mag Conc Res 39(140):148–160
3.
Zurück zum Zitat Li VC, Ward R, Hamza AM (1992) Steel and synthetic fibers as shear reinforcement. ACI Mater J 89(5):499–508 Li VC, Ward R, Hamza AM (1992) Steel and synthetic fibers as shear reinforcement. ACI Mater J 89(5):499–508
4.
Zurück zum Zitat Narayanan R, Darwish IYS (1987) Use of steel fibers as shear reinforcement. ACI Struct J 84(3):216–227 Narayanan R, Darwish IYS (1987) Use of steel fibers as shear reinforcement. ACI Struct J 84(3):216–227
5.
Zurück zum Zitat Narayanan R, Darwish IYS (1988) Fiber concrete deep beams in shear. ACI Struct J 85(2):141–149 Narayanan R, Darwish IYS (1988) Fiber concrete deep beams in shear. ACI Struct J 85(2):141–149
6.
Zurück zum Zitat Mansur MA, Ong KCG, Paramasivam P (1986) Shear strength of fibrous concrete beams without stirrups. J Struct Eng ASCE 112(9):2066–2079 Mansur MA, Ong KCG, Paramasivam P (1986) Shear strength of fibrous concrete beams without stirrups. J Struct Eng ASCE 112(9):2066–2079
7.
Zurück zum Zitat Swamy RN, Bahia HM (1985) Effectiveness of steel fibers as shear reinforcement. Concr Int Design Constr 7(3):35–40 Swamy RN, Bahia HM (1985) Effectiveness of steel fibers as shear reinforcement. Concr Int Design Constr 7(3):35–40
8.
Zurück zum Zitat Murty DSR, Venkatacharyulu T (1987) Fiber reinforced concrete beams subjected to shear force. In: Proceedings of the international symposium on fiber reinforced concrete. Madras, India. pp 1125–1132 Murty DSR, Venkatacharyulu T (1987) Fiber reinforced concrete beams subjected to shear force. In: Proceedings of the international symposium on fiber reinforced concrete. Madras, India. pp 1125–1132
9.
Zurück zum Zitat Ashour SA, Hasanain GS, Wafa FF (1992) Shear behavior of high strength fiber reinforced concrete beams. ACI Struct J 89(2):176–184 Ashour SA, Hasanain GS, Wafa FF (1992) Shear behavior of high strength fiber reinforced concrete beams. ACI Struct J 89(2):176–184
10.
Zurück zum Zitat Balazs GL, Kovacs I (2000) Flexural behaviour of RC and PC beams with steel fibre. In: Proceedings of the international workshop on structural application of steel fibre reinforced con crete. Politecncio of Milan, Milan. pp 85–92 Balazs GL, Kovacs I (2000) Flexural behaviour of RC and PC beams with steel fibre. In: Proceedings of the international workshop on structural application of steel fibre reinforced con crete. Politecncio of Milan, Milan. pp 85–92
11.
Zurück zum Zitat Furlan S, De Hanai JB (1997) Shear behaviour of fiber reinforced concrete beams. Cem Concr Compos 19(4):359–366 Furlan S, De Hanai JB (1997) Shear behaviour of fiber reinforced concrete beams. Cem Concr Compos 19(4):359–366
12.
Zurück zum Zitat Dinh HH, Parra-Montesinos GJ, Wight JK (2010) Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement. ACI Struct J 107(5):597–606 Dinh HH, Parra-Montesinos GJ, Wight JK (2010) Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement. ACI Struct J 107(5):597–606
13.
Zurück zum Zitat Shin SW, Oh J, Ghosh SK (1994) Shear behavior of laboratory sized high-strength concrete beams reinforced with bars and steel fibers, fiber reinforced concrete developments and innovations, SP 142. American Concrete Institute, Farmington Hills, pp 181–200 Shin SW, Oh J, Ghosh SK (1994) Shear behavior of laboratory sized high-strength concrete beams reinforced with bars and steel fibers, fiber reinforced concrete developments and innovations, SP 142. American Concrete Institute, Farmington Hills, pp 181–200
14.
Zurück zum Zitat Greenough T, Nehdi M (2008) Shear behavior of fiber-reinforced self-consolidating concrete slender beams. ACI Mater J 105(5):468–477 Greenough T, Nehdi M (2008) Shear behavior of fiber-reinforced self-consolidating concrete slender beams. ACI Mater J 105(5):468–477
15.
Zurück zum Zitat Imam M, Vandewalle L, Mortelmans F (1994) Shear capacity of steel fibre concrete beams. In: Malhotra M (ed) Proceedings of ACI international conference on high-performance-concrete. ACISP-149, Singapore, pp 227–243 Imam M, Vandewalle L, Mortelmans F (1994) Shear capacity of steel fibre concrete beams. In: Malhotra M (ed) Proceedings of ACI international conference on high-performance-concrete. ACISP-149, Singapore, pp 227–243
16.
Zurück zum Zitat Adebar P, Mindess S, Pierre D, Olund B (1997) Shear tests of fiber concrete beams without stirrups. ACI Struct J 94(1):68–76 Adebar P, Mindess S, Pierre D, Olund B (1997) Shear tests of fiber concrete beams without stirrups. ACI Struct J 94(1):68–76
17.
Zurück zum Zitat Kwak YK, Eberhard MO, Kim WS, Kim J (2002) Shear strength of steel-fibre-reinforced-concrete beams without stirrups. ACI Struct J 99(4):530–538 Kwak YK, Eberhard MO, Kim WS, Kim J (2002) Shear strength of steel-fibre-reinforced-concrete beams without stirrups. ACI Struct J 99(4):530–538
18.
Zurück zum Zitat Batson G, Jenkins E, Spatney R (1972) Steel fibers as shear reinforcement in beams. ACI J Proc 69(10):640–644 Batson G, Jenkins E, Spatney R (1972) Steel fibers as shear reinforcement in beams. ACI J Proc 69(10):640–644
19.
Zurück zum Zitat Cucchiara C, Mendola LL, Papia M (2004) Effectiveness of stirrups and steel fibers as shear reinforcement. Cem Concr Comp 26:777–786 Cucchiara C, Mendola LL, Papia M (2004) Effectiveness of stirrups and steel fibers as shear reinforcement. Cem Concr Comp 26:777–786
20.
Zurück zum Zitat Cho S, Kim Y (2003) Effects of steel fibers on short beams loaded in shear. ACI Struct J 100(6):765–774 Cho S, Kim Y (2003) Effects of steel fibers on short beams loaded in shear. ACI Struct J 100(6):765–774
21.
Zurück zum Zitat Sharma AK (1986) Shear strength of steel-fibre-reinforced-concrete beams. ACI Struct J 83(4):624–628 Sharma AK (1986) Shear strength of steel-fibre-reinforced-concrete beams. ACI Struct J 83(4):624–628
22.
Zurück zum Zitat Rosenbusch J, Teutsch M (2003) Shear design with (σ − ε)method. In: Proceedings of the international RILEM workshop on test and design methods for steel fiber reinforced concrete. RILEM Publications SARL, Bochum, pp 105–17 Rosenbusch J, Teutsch M (2003) Shear design with (σ − ε)method. In: Proceedings of the international RILEM workshop on test and design methods for steel fiber reinforced concrete. RILEM Publications SARL, Bochum, pp 105–17
23.
Zurück zum Zitat Hockenberry T, Lopez MM (2012) Performance of fiber reinforced concrete beams with and without stirrups. J Civil Environ Arc Eng 4(1):1–11 Hockenberry T, Lopez MM (2012) Performance of fiber reinforced concrete beams with and without stirrups. J Civil Environ Arc Eng 4(1):1–11
24.
Zurück zum Zitat Hwang J, Lee D, Kim K, Ju H, Seo S (2013) Evaluation of shear performance of steel fibre reinforced concrete beams using a modified smeared-truss model. Mag Concr Res 65(5):283–296 Hwang J, Lee D, Kim K, Ju H, Seo S (2013) Evaluation of shear performance of steel fibre reinforced concrete beams using a modified smeared-truss model. Mag Concr Res 65(5):283–296
25.
Zurück zum Zitat Campione G, La Mendola L, Papia M (2006) Shear strength of steel fiber reinforced concrete beams with stirrups. Struct Eng Mech 24(1):107–136 Campione G, La Mendola L, Papia M (2006) Shear strength of steel fiber reinforced concrete beams with stirrups. Struct Eng Mech 24(1):107–136
26.
Zurück zum Zitat Al-Ta’an Al-Feel SAJR (1990) Evaluation of shear strength of fibre-reinforced concrete beams. Cem Concr Compos 12(2):87–94 Al-Ta’an Al-Feel SAJR (1990) Evaluation of shear strength of fibre-reinforced concrete beams. Cem Concr Compos 12(2):87–94
27.
Zurück zum Zitat Khuntia M, Stojadinovic B, Goel SC (1999) Shear strength of normal and high strength fiber reinforced concrete beams without stirrups. ACI Struct J 96(2):282–289 Khuntia M, Stojadinovic B, Goel SC (1999) Shear strength of normal and high strength fiber reinforced concrete beams without stirrups. ACI Struct J 96(2):282–289
28.
Zurück zum Zitat Gandomi AH, Alavi AH, Yun GJ (2011) Nonlinear modeling of shear strength of SFRC beams using linear genetic programming. Struct Eng Mech 38(1):1–25 Gandomi AH, Alavi AH, Yun GJ (2011) Nonlinear modeling of shear strength of SFRC beams using linear genetic programming. Struct Eng Mech 38(1):1–25
29.
Zurück zum Zitat Fatih Kara I (2013) Empirical modeling of shear strength of steel fiber reinforced concrete beams by gene expression programming. Neur Comput Appl 23:823–8348 Fatih Kara I (2013) Empirical modeling of shear strength of steel fiber reinforced concrete beams by gene expression programming. Neur Comput Appl 23:823–8348
30.
Zurück zum Zitat Khaloo AR, Kim N (1997) Influence of concrete and fiber characteristics on behavior of steel fiber reinforced concrete under direct shear. ACI Mater J 94(6):592–601 Khaloo AR, Kim N (1997) Influence of concrete and fiber characteristics on behavior of steel fiber reinforced concrete under direct shear. ACI Mater J 94(6):592–601
31.
Zurück zum Zitat Shin SW, Oh JG, Ghosh SK (1994) Shear behavior of laboratory-sized high strength concrete beams reinforced with bars and steel fibers symposium paper 142:181–200 Shin SW, Oh JG, Ghosh SK (1994) Shear behavior of laboratory-sized high strength concrete beams reinforced with bars and steel fibers symposium paper 142:181–200
32.
Zurück zum Zitat Kwak Y, Eberhard MO, Kim W, Kim J (2002) Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Struct J 99(4):530–538 Kwak Y, Eberhard MO, Kim W, Kim J (2002) Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Struct J 99(4):530–538
33.
Zurück zum Zitat Narayanan R, Darwish IYS (1988) Fiber concrete beams in shear. ACI Struct J 85(2):141–149 Narayanan R, Darwish IYS (1988) Fiber concrete beams in shear. ACI Struct J 85(2):141–149
34.
Zurück zum Zitat Ahmadi M, Kheyroddin A, Dalvand A, Kioumarsi M (2020) New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams. Constr Build Mater 234:117293 Ahmadi M, Kheyroddin A, Dalvand A, Kioumarsi M (2020) New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams. Constr Build Mater 234:117293
35.
Zurück zum Zitat Naderpour H, Haji M, Mirrashid M (2020) Shear capacity estimation of FRP-reinforced concrete beams using computational intelligence. Struct 28:321–328 Naderpour H, Haji M, Mirrashid M (2020) Shear capacity estimation of FRP-reinforced concrete beams using computational intelligence. Struct 28:321–328
36.
Zurück zum Zitat Adhikary BB, Mutsuyoshi H (2006) Prediction of shear strength of steel fiber RC beams using neural networks. Constr Build Mater 20(2):801–811 Adhikary BB, Mutsuyoshi H (2006) Prediction of shear strength of steel fiber RC beams using neural networks. Constr Build Mater 20(2):801–811
37.
Zurück zum Zitat Tohidi S, Sharifi Y (2015) Neural networks for inelastic distortional buckling capacity assessment of steel I-beams. Thin-Walled Struct 94(9):359–371 Tohidi S, Sharifi Y (2015) Neural networks for inelastic distortional buckling capacity assessment of steel I-beams. Thin-Walled Struct 94(9):359–371
38.
Zurück zum Zitat Tohidi S, Sharifi Y (2014) A new predictive model for restrained distortional buckling strength of half-through bridge girders using artificial neural network. KSCE J Civ Eng 10(3):325–350 Tohidi S, Sharifi Y (2014) A new predictive model for restrained distortional buckling strength of half-through bridge girders using artificial neural network. KSCE J Civ Eng 10(3):325–350
39.
Zurück zum Zitat Tohidi S, Sharifi Y (2014) Inelastic lateral-torsional buckling capacity of corroded web opening steel beams using artificial neural networks. IES J Part A: Civ Struct Eng 8(1):24–40 Tohidi S, Sharifi Y (2014) Inelastic lateral-torsional buckling capacity of corroded web opening steel beams using artificial neural networks. IES J Part A: Civ Struct Eng 8(1):24–40
40.
Zurück zum Zitat Sharifi Y, Tohidi S (2014) Lateral-torsional buckling capacity assessment of web opening steel girders by artificial neural networks–elastic investigation. Front Struct Civ Eng 8(2):167–177 Sharifi Y, Tohidi S (2014) Lateral-torsional buckling capacity assessment of web opening steel girders by artificial neural networks–elastic investigation. Front Struct Civ Eng 8(2):167–177
41.
Zurück zum Zitat Sharifi Y, Tohidi S (2014) Ultimate capacity assessment of web plate beams with pitting corrosion subjected to patch loading by artificial neural networks. Adv Steel Const 10(3):325–350 Sharifi Y, Tohidi S (2014) Ultimate capacity assessment of web plate beams with pitting corrosion subjected to patch loading by artificial neural networks. Adv Steel Const 10(3):325–350
42.
Zurück zum Zitat Tohidi S, Sharifi Y (2014) Load-carrying capacity of locally corroded steel plate girder ends using artificial neural network. Thin Walled Struct 100(1):48–61 Tohidi S, Sharifi Y (2014) Load-carrying capacity of locally corroded steel plate girder ends using artificial neural network. Thin Walled Struct 100(1):48–61
43.
Zurück zum Zitat Tohidi S, Sharifi Y (2015) Empirical modeling of distortional buckling strength of half-through bridge girders via stepwise regression method. Adv Struct Eng 18(9):1383–1397 Tohidi S, Sharifi Y (2015) Empirical modeling of distortional buckling strength of half-through bridge girders via stepwise regression method. Adv Struct Eng 18(9):1383–1397
44.
Zurück zum Zitat Sharifi Y, Hosseinpour M (2019) Adaptive neuro-fuzzy inference system and stepwise regression for compressive strength assessment of concrete containing metakaolin. Int J Optimization Civ Eng 9(2):251–272 Sharifi Y, Hosseinpour M (2019) Adaptive neuro-fuzzy inference system and stepwise regression for compressive strength assessment of concrete containing metakaolin. Int J Optimization Civ Eng 9(2):251–272
45.
Zurück zum Zitat Sharifi Y, Lotfi F, Moghbeli A (2019) Compressive strength prediction by ANN formulation approach for FRP confined rectangular concrete columns. J Rehabil Civ Eng 7(3):182–203 Sharifi Y, Lotfi F, Moghbeli A (2019) Compressive strength prediction by ANN formulation approach for FRP confined rectangular concrete columns. J Rehabil Civ Eng 7(3):182–203
46.
Zurück zum Zitat Sharifi Y, Moghbeli A, Hosseinpour M, Sharifi H (2019) Neural networks for lateral torsional buckling strength assessment of cellular steel I-beams. Adv Struct Eng 22(9):2192–2202 Sharifi Y, Moghbeli A, Hosseinpour M, Sharifi H (2019) Neural networks for lateral torsional buckling strength assessment of cellular steel I-beams. Adv Struct Eng 22(9):2192–2202
48.
Zurück zum Zitat Sharifi Y, Hosseinpour M, Moghbeli A, Sharifi H (2019) Lateral torsional buckling capacity assessment of castellated steel beams using artificial neural networks. Int J Steel Struct 19:1408–1420 Sharifi Y, Hosseinpour M, Moghbeli A, Sharifi H (2019) Lateral torsional buckling capacity assessment of castellated steel beams using artificial neural networks. Int J Steel Struct 19:1408–1420
49.
Zurück zum Zitat Sharifi Y, Mohammadi N, Moghbeli A (2018) Shear capacity assessment of reinforced concrete deep beams using artificial neural network. J Concr Struct Mat 3(5):30–43 Sharifi Y, Mohammadi N, Moghbeli A (2018) Shear capacity assessment of reinforced concrete deep beams using artificial neural network. J Concr Struct Mat 3(5):30–43
51.
Zurück zum Zitat Hosseinpour M, Sharifi Y, Sharifi H (2020) Neural network application for distortional buckling capacity assessment of castellated steel beams. Struct 27:1174–1183 Hosseinpour M, Sharifi Y, Sharifi H (2020) Neural network application for distortional buckling capacity assessment of castellated steel beams. Struct 27:1174–1183
52.
Zurück zum Zitat Sharifi Y, Hosseinpour M (2020) Compressive strength assessment of concrete containing metakaolin using ANN. J Rehabil Civ Eng 8(4):15–27 Sharifi Y, Hosseinpour M (2020) Compressive strength assessment of concrete containing metakaolin using ANN. J Rehabil Civ Eng 8(4):15–27
53.
Zurück zum Zitat Sharifi Y, Moghbeli A (2019) Stepwise regression for shear capacity assessment of steel fiber reinforced concrete beams. J Rehabil Civ Eng 7(2):95–108 Sharifi Y, Moghbeli A (2019) Stepwise regression for shear capacity assessment of steel fiber reinforced concrete beams. J Rehabil Civ Eng 7(2):95–108
54.
Zurück zum Zitat Sharifi Y, Mohammadi N, Moghbeli, (2020) Artificial neural network for Shear Strength assessment of slender reinforced concrete beams without stirrup. J Iranian Soc Civ Eng 21(55):54–63 Sharifi Y, Mohammadi N, Moghbeli, (2020) Artificial neural network for Shear Strength assessment of slender reinforced concrete beams without stirrup. J Iranian Soc Civ Eng 21(55):54–63
55.
Zurück zum Zitat Sharifi Y, Moghbeli A (2020) New predictive models via gene expression programming and multiple nonlinear regression for SFRC beams. J Mat Res Tech 9(6):14294–14306 Sharifi Y, Moghbeli A (2020) New predictive models via gene expression programming and multiple nonlinear regression for SFRC beams. J Mat Res Tech 9(6):14294–14306
56.
Zurück zum Zitat Sharifi Y, Moghbeli A (2020) New empirical approaches for compressive strength assessment of CFRP confined rectangular concrete columns. Compos Struct, Available online 28:113373 Sharifi Y, Moghbeli A (2020) New empirical approaches for compressive strength assessment of CFRP confined rectangular concrete columns. Compos Struct, Available online 28:113373
57.
Zurück zum Zitat Moghbeli A, Sharifi Y (2021) New predictive equations for lateral-distortional buckling capacity assessment of cellular steel beams. Struct 29:911–923 Moghbeli A, Sharifi Y (2021) New predictive equations for lateral-distortional buckling capacity assessment of cellular steel beams. Struct 29:911–923
58.
Zurück zum Zitat Hristev RM (1998) The ANN book. GNU public license Hristev RM (1998) The ANN book. GNU public license
59.
Zurück zum Zitat Frank IE, Todeschini R (1994) the data analysis handbook. Elsevier, Amsterdam Frank IE, Todeschini R (1994) the data analysis handbook. Elsevier, Amsterdam
60.
Zurück zum Zitat Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):861–867 Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):861–867
61.
Zurück zum Zitat Marquardt D (1963) An algorithm for least squares estimation of non-linear parameters. J Soc Ind Appl Math 11:431–441 Marquardt D (1963) An algorithm for least squares estimation of non-linear parameters. J Soc Ind Appl Math 11:431–441
62.
Zurück zum Zitat Smith GN (1986) Probability and statistics in civil engineering. Collins, London Smith GN (1986) Probability and statistics in civil engineering. Collins, London
63.
Zurück zum Zitat Garson GD (1991) Interpreting neural-network connection weights 47:51 Garson GD (1991) Interpreting neural-network connection weights 47:51
Metadaten
Titel
Shear capacity assessment of steel fiber reinforced concrete beams using artificial neural network
verfasst von
Yasser Sharifi
Adel Moghbeli
Publikationsdatum
01.06.2021
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 2/2021
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-021-00457-5

Weitere Artikel der Ausgabe 2/2021

Innovative Infrastructure Solutions 2/2021 Zur Ausgabe