Skip to main content

2014 | OriginalPaper | Buchkapitel

6. SiC Nanotubes

verfasst von : Jiyang Fan, Paul K. Chu

Erschienen in: Silicon Carbide Nanostructures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In most cases, the silicon carbide nanotubes have been fabricated with assistance of some templates. Unlike carbon nanotubes, the silicon carbide nanotubes contain two types of elements, silicon, and carbon; therefore, the structure of the SiC nanotube is basically different from that of the carbon nanotube.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pham-Huu C, Keller N, Ehret G, Ledoux MJ (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200:400–410CrossRef Pham-Huu C, Keller N, Ehret G, Ledoux MJ (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200:400–410CrossRef
2.
Zurück zum Zitat Nhut J-M, Vieira R, Pesant L, Tessonnier J-P, Keller N, Ehret G, Pham-Huu C, Ledoux MJ (2002) Synthesis and catalytic uses of carbon and silicon carbide nanostructures. Catal Today 76:11–32CrossRef Nhut J-M, Vieira R, Pesant L, Tessonnier J-P, Keller N, Ehret G, Pham-Huu C, Ledoux MJ (2002) Synthesis and catalytic uses of carbon and silicon carbide nanostructures. Catal Today 76:11–32CrossRef
3.
Zurück zum Zitat Sun X-H, Li C-P, Wong W-K, Wong N-B, Lee C-S, Lee S-T, Teo B-K (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464–14471CrossRef Sun X-H, Li C-P, Wong W-K, Wong N-B, Lee C-S, Lee S-T, Teo B-K (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464–14471CrossRef
4.
Zurück zum Zitat Taguchi T, Igawa N, Yamamoto H, Jitsukawa S (2005) Synthesis of silicon carbide nanotubes. J Am Ceram Soc 88:459–461CrossRef Taguchi T, Igawa N, Yamamoto H, Jitsukawa S (2005) Synthesis of silicon carbide nanotubes. J Am Ceram Soc 88:459–461CrossRef
5.
Zurück zum Zitat Borowiak-Palen E, Ruemmeli MH, Gemming T, Knupfer M, Biedermann K, Leonhardt A, Pichler T, Kalenczuk RJ (2005) Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J Appl Phys 97:056102 Borowiak-Palen E, Ruemmeli MH, Gemming T, Knupfer M, Biedermann K, Leonhardt A, Pichler T, Kalenczuk RJ (2005) Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J Appl Phys 97:056102
6.
Zurück zum Zitat Hu JQ, Bando Y, Zhan JH, Golberg D (2004) Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). Appl Phys Lett 85:2932–2934CrossRef Hu JQ, Bando Y, Zhan JH, Golberg D (2004) Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes). Appl Phys Lett 85:2932–2934CrossRef
7.
Zurück zum Zitat Zhou J, Liu J, Yang R, Lao C, Gao P, Tummala R, Xu NS, Wang ZL (2006) SiC-shell nanostructures fabricated by replicating ZnO nano-objects: a technique for producing hollow nanostructures of desired shape. Small 2:1344–1347CrossRef Zhou J, Liu J, Yang R, Lao C, Gao P, Tummala R, Xu NS, Wang ZL (2006) SiC-shell nanostructures fabricated by replicating ZnO nano-objects: a technique for producing hollow nanostructures of desired shape. Small 2:1344–1347CrossRef
8.
Zurück zum Zitat Zhou J, Zhou M, Chen Z, Zhang Z, Chen C, Li R, Gao X, Xie E (2009) SiC nanotubes arrays fabricated by sputtering using electrospun PVP nanofiber as templates. Surf Coat Tech 203:3219–3223CrossRef Zhou J, Zhou M, Chen Z, Zhang Z, Chen C, Li R, Gao X, Xie E (2009) SiC nanotubes arrays fabricated by sputtering using electrospun PVP nanofiber as templates. Surf Coat Tech 203:3219–3223CrossRef
9.
Zurück zum Zitat Dřínek V, Šubrt J, Klementová M, Rieder M, Fajgar R (2009) From shelled Ge nanowires to SiC nanotubes. Nanotechnology 20:035606 Dřínek V, Šubrt J, Klementová M, Rieder M, Fajgar R (2009) From shelled Ge nanowires to SiC nanotubes. Nanotechnology 20:035606
10.
Zurück zum Zitat Latu-Romain L, Ollivier M, Mantoux A, Auvert G, Chaix-Pluchery O, Sarigiannidou E, Bano E, Pelissier B, Roukoss C, Roussel H, Dhalluin F, Salem B, Jegenyes N, Ferro G, Chaussende D, Baron T (2011) From Si nanowire to SiC nanotube. J Nanopart Res 13:5425–5433CrossRef Latu-Romain L, Ollivier M, Mantoux A, Auvert G, Chaix-Pluchery O, Sarigiannidou E, Bano E, Pelissier B, Roukoss C, Roussel H, Dhalluin F, Salem B, Jegenyes N, Ferro G, Chaussende D, Baron T (2011) From Si nanowire to SiC nanotube. J Nanopart Res 13:5425–5433CrossRef
11.
Zurück zum Zitat Wang H, Li X-D, Kim T-S, Kim D-P (2005) Inorganic polymer-derived tubular SiC arrays from sacrificial alumina templates. Appl Phys Lett 86:173104CrossRef Wang H, Li X-D, Kim T-S, Kim D-P (2005) Inorganic polymer-derived tubular SiC arrays from sacrificial alumina templates. Appl Phys Lett 86:173104CrossRef
12.
Zurück zum Zitat Cheng Q-M, Interrante LV, Lienhard M, Shen Q, Wu Z (2005) Methylene-bridged carbosilanes and polycarbosilanes as precursors to silicon carbide—from ceramic composites to SiC nanomaterials. J Eur Ceram Soc 25:233–241 Cheng Q-M, Interrante LV, Lienhard M, Shen Q, Wu Z (2005) Methylene-bridged carbosilanes and polycarbosilanes as precursors to silicon carbide—from ceramic composites to SiC nanomaterials. J Eur Ceram Soc 25:233–241
13.
Zurück zum Zitat Yang Z, Xia Y, Mokaya R (2004) High surface area silicon carbide whiskers and nanotubes nanocast using mesoporous silica. Chem Mater 16:3877–3884CrossRef Yang Z, Xia Y, Mokaya R (2004) High surface area silicon carbide whiskers and nanotubes nanocast using mesoporous silica. Chem Mater 16:3877–3884CrossRef
14.
Zurück zum Zitat Huang GS, Mei YF, Cavallo F, Baunack S, Coric E, Gemming T, Bertram F, Christen J, Fu RKY, Chu PK, Schmidt OG (2009) Fabrication and optical properties of C/β-SiC/Si hybrid rolled-up microtubes. J Appl Phys 105:016103CrossRef Huang GS, Mei YF, Cavallo F, Baunack S, Coric E, Gemming T, Bertram F, Christen J, Fu RKY, Chu PK, Schmidt OG (2009) Fabrication and optical properties of C/β-SiC/Si hybrid rolled-up microtubes. J Appl Phys 105:016103CrossRef
15.
Zurück zum Zitat Pei LZ, Tang YH, Chen YW, Guo C, Li XX, Yuan Y, Zhang Y (2006) Preparation of silicon carbide nanotubes by hydrothermal method. J Appl Phys 99:114306CrossRef Pei LZ, Tang YH, Chen YW, Guo C, Li XX, Yuan Y, Zhang Y (2006) Preparation of silicon carbide nanotubes by hydrothermal method. J Appl Phys 99:114306CrossRef
16.
Zurück zum Zitat Cui H, Sun Y, Yang GZ, Chen J, Jiang D, Wang CX (2009) Template- and catalyst-free synthesis, growth mechanism and excellent field emission properties of large scale single-crystalline tubular β-SiC. Chem Commun 6243–6245 Cui H, Sun Y, Yang GZ, Chen J, Jiang D, Wang CX (2009) Template- and catalyst-free synthesis, growth mechanism and excellent field emission properties of large scale single-crystalline tubular β-SiC. Chem Commun 6243–6245
17.
Zurück zum Zitat Miyamoto Y, Yu BD (2002) Computational designing of graphitic silicon carbide and its tubular forms. Appl Phys Lett 80:586–588CrossRef Miyamoto Y, Yu BD (2002) Computational designing of graphitic silicon carbide and its tubular forms. Appl Phys Lett 80:586–588CrossRef
18.
Zurück zum Zitat Menon M, Richter E, Mavrandonakis A, Froudakis G, Andriotis AN (2004) Structure and stability of SiC nanotubes. Phys Rev B 69:115322 Menon M, Richter E, Mavrandonakis A, Froudakis G, Andriotis AN (2004) Structure and stability of SiC nanotubes. Phys Rev B 69:115322
19.
Zurück zum Zitat Zhao M, Xia Y, Li F, Zhang RQ, Lee S-T (2005) Strain energy and electronic structures of silicon carbide nanotubes: density functional calculations. Phys Rev B 71:085312CrossRef Zhao M, Xia Y, Li F, Zhang RQ, Lee S-T (2005) Strain energy and electronic structures of silicon carbide nanotubes: density functional calculations. Phys Rev B 71:085312CrossRef
20.
Zurück zum Zitat Zhao M, Xia Y, Zhang RQ, Lee S-T (2005) Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation. J Chem Phys 122:214707CrossRef Zhao M, Xia Y, Zhang RQ, Lee S-T (2005) Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation. J Chem Phys 122:214707CrossRef
21.
Zurück zum Zitat Li F, Xi Y-Y, Zhao M-W, Liu X-D, Huang B-D, Yang Z-H, Ji Y-J, Song C (2005) Density-functional theory calculations of XH3-decorated SiC nanotubes (X={C, Si}): structures, energetics, and electronic structures. J Appl Phys 97:104311CrossRef Li F, Xi Y-Y, Zhao M-W, Liu X-D, Huang B-D, Yang Z-H, Ji Y-J, Song C (2005) Density-functional theory calculations of XH3-decorated SiC nanotubes (X={C, Si}): structures, energetics, and electronic structures. J Appl Phys 97:104311CrossRef
22.
Zurück zum Zitat Baumeier B, Krüger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76:085407CrossRef Baumeier B, Krüger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76:085407CrossRef
23.
Zurück zum Zitat Alam KM, Ray AK (2008) Hybrid density functional study of armchair SiC nanotubes. Phys Rev B 77:035436CrossRef Alam KM, Ray AK (2008) Hybrid density functional study of armchair SiC nanotubes. Phys Rev B 77:035436CrossRef
24.
Zurück zum Zitat Alam KM, Ray AK (2007) A hybrid density functional study of zigzag SiC nanotubes. Nanotechnology 18:495706CrossRef Alam KM, Ray AK (2007) A hybrid density functional study of zigzag SiC nanotubes. Nanotechnology 18:495706CrossRef
25.
Zurück zum Zitat Alfieri G, Kimoto T (2009) The structural and electronic properties of chiral SiC nanotubes: a hybrid density functional study. Nanotechnology 20:285703CrossRef Alfieri G, Kimoto T (2009) The structural and electronic properties of chiral SiC nanotubes: a hybrid density functional study. Nanotechnology 20:285703CrossRef
26.
Zurück zum Zitat Gali A (2006) Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys Rev B 73:245415CrossRef Gali A (2006) Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys Rev B 73:245415CrossRef
27.
Zurück zum Zitat Gali A (2007) Ab initio theoretical study of hydrogen and its interaction with boron acceptors and nitrogen donors in single-wall silicon carbide nanotubes. Phys Rev B 75:085416CrossRef Gali A (2007) Ab initio theoretical study of hydrogen and its interaction with boron acceptors and nitrogen donors in single-wall silicon carbide nanotubes. Phys Rev B 75:085416CrossRef
28.
Zurück zum Zitat Szabó Á, Gali A (2009) Effect of oxygen on single-wall silicon carbide nanotubes studied by first-principles calculations. Phys Rev B 80:075425CrossRef Szabó Á, Gali A (2009) Effect of oxygen on single-wall silicon carbide nanotubes studied by first-principles calculations. Phys Rev B 80:075425CrossRef
29.
Zurück zum Zitat Baierle RJ, Piquini P, Neves LP, Miwa RH (2006) Ab initio study of native defects in SiC nanotubes. Phys Rev B 74:155425CrossRef Baierle RJ, Piquini P, Neves LP, Miwa RH (2006) Ab initio study of native defects in SiC nanotubes. Phys Rev B 74:155425CrossRef
30.
Zurück zum Zitat Zhang Y, Huang H (2008) Stability of single-wall silicon carbide nanotubes - molecular dynamics simulations. Comp Mater Sci 43:664–669CrossRef Zhang Y, Huang H (2008) Stability of single-wall silicon carbide nanotubes - molecular dynamics simulations. Comp Mater Sci 43:664–669CrossRef
31.
Zurück zum Zitat Wang Z, Zu X, Xiao H, Gao F, Weber WJ (2008) Tuning the band structures of single walled silicon carbide nanotubes with uniaxial strain: a first principles study. Appl Phys Lett 92:183116CrossRef Wang Z, Zu X, Xiao H, Gao F, Weber WJ (2008) Tuning the band structures of single walled silicon carbide nanotubes with uniaxial strain: a first principles study. Appl Phys Lett 92:183116CrossRef
32.
Zurück zum Zitat Wu IJ, Guo GY (2007) Optical properties of SiC nanotubes: an ab initio study. Phys. Rev. B 76:035343CrossRef Wu IJ, Guo GY (2007) Optical properties of SiC nanotubes: an ab initio study. Phys. Rev. B 76:035343CrossRef
33.
Zurück zum Zitat Mavrandonakis A, Froudakis GE, Andriotis A, Menon M (2006) Silicon carbide nanotube tips: promising materials for atomic force microscopy and/or scanning tunneling microscopy. Appl Phys Lett 89:123126CrossRef Mavrandonakis A, Froudakis GE, Andriotis A, Menon M (2006) Silicon carbide nanotube tips: promising materials for atomic force microscopy and/or scanning tunneling microscopy. Appl Phys Lett 89:123126CrossRef
34.
Zurück zum Zitat Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) SiC nanotubes: a novel material for hydrogen storage. Nano Lett 6:1581–1583 Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) SiC nanotubes: a novel material for hydrogen storage. Nano Lett 6:1581–1583
35.
Zurück zum Zitat Wu RQ, Yang M, Lu YH, Feng YP, Huang ZG, Wu QY (2008) Silicon carbide nanotubes as potential gas sensors for CO and HCN detection. J Phys Chem C 112:15985–15988CrossRef Wu RQ, Yang M, Lu YH, Feng YP, Huang ZG, Wu QY (2008) Silicon carbide nanotubes as potential gas sensors for CO and HCN detection. J Phys Chem C 112:15985–15988CrossRef
36.
Zurück zum Zitat Gao G, Kang HS (2008) First principles study of NO and NNO chemisorption on silicon carbide nanotubes and other nanotubes. J Chem Theory Comput 4:1690–1697CrossRef Gao G, Kang HS (2008) First principles study of NO and NNO chemisorption on silicon carbide nanotubes and other nanotubes. J Chem Theory Comput 4:1690–1697CrossRef
37.
Zurück zum Zitat Wang X, Liew KM (2011) Silicon carbide nanotubes serving as a highly sensitive gas chemical sensor for formaldehyde. J Phys Chem C 115:10388–10393CrossRef Wang X, Liew KM (2011) Silicon carbide nanotubes serving as a highly sensitive gas chemical sensor for formaldehyde. J Phys Chem C 115:10388–10393CrossRef
38.
Zurück zum Zitat Zhao J-X, Xiao B, Ding Y-H (2009) Theoretical prediction of the N-H and O-H bonds cleavage catalyzed by the single-walled silicon carbide nanotube. J Phys Chem C 113:16736–16740CrossRef Zhao J-X, Xiao B, Ding Y-H (2009) Theoretical prediction of the N-H and O-H bonds cleavage catalyzed by the single-walled silicon carbide nanotube. J Phys Chem C 113:16736–16740CrossRef
39.
Zurück zum Zitat Zhao J-X, Ding Y-H (2008) Silicon carbide nanotubes functionalized by transition metal atoms: a density-functional study. J Phys Chem C 112:2558–2564CrossRef Zhao J-X, Ding Y-H (2008) Silicon carbide nanotubes functionalized by transition metal atoms: a density-functional study. J Phys Chem C 112:2558–2564CrossRef
40.
Zurück zum Zitat Sun L, Li Y, Li Z, Li Q, Zhou Z, Chen Z, Yang J, Hou JG (2008) Electronic structures of SiC nanoribbons. J Chem Phys 129:174114CrossRef Sun L, Li Y, Li Z, Li Q, Zhou Z, Chen Z, Yang J, Hou JG (2008) Electronic structures of SiC nanoribbons. J Chem Phys 129:174114CrossRef
41.
Zurück zum Zitat Zhao K, Zhao M, Wang Z, Fan Y (2010) Tight-binding model for the electronic structures of SiC and BN nanoribbons. Physica E 43:440–445 Zhao K, Zhao M, Wang Z, Fan Y (2010) Tight-binding model for the electronic structures of SiC and BN nanoribbons. Physica E 43:440–445
42.
Zurück zum Zitat Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S (2010) First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys Rev B 81:075433CrossRef Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S (2010) First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys Rev B 81:075433CrossRef
43.
Zurück zum Zitat Lin SS (2012) Light-emitting two-dimensional ultrathin silicon carbide. J Phys Chem C 116:3951–3955CrossRef Lin SS (2012) Light-emitting two-dimensional ultrathin silicon carbide. J Phys Chem C 116:3951–3955CrossRef
Metadaten
Titel
SiC Nanotubes
verfasst von
Jiyang Fan
Paul K. Chu
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-08726-9_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.