Skip to main content
Erschienen in: Minds and Machines 2/2011

01.05.2011

Significance of Models of Computation, from Turing Model to Natural Computation

verfasst von: Gordana Dodig-Crnkovic

Erschienen in: Minds and Machines | Ausgabe 2/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increased interactivity and connectivity of computational devices along with the spreading of computational tools and computational thinking across the fields, has changed our understanding of the nature of computing. In the course of this development computing models have been extended from the initial abstract symbol manipulating mechanisms of stand-alone, discrete sequential machines, to the models of natural computing in the physical world, generally concurrent asynchronous processes capable of modelling living systems, their informational structures and dynamics on both symbolic and sub-symbolic information processing levels. Present account of models of computation highlights several topics of importance for the development of new understanding of computing and its role: natural computation and the relationship between the model and physical implementation, interactivity as fundamental for computational modelling of concurrent information processing systems such as living organisms and their networks, and the new developments in logic needed to support this generalized framework. Computing understood as information processing is closely related to natural sciences; it helps us recognize connections between sciences, and provides a unified approach for modeling and simulating of both living and non-living systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
“Cognitive sciences” here refer to “the interdisciplinary study of mind and intelligence, embracing philosophy, psychology, artificial intelligence, neuroscience, linguistics, and anthropology.”, according to Thagard, Paul, "Cognitive Science", The Stanford Encyclopedia of Philosophy (Summer 2010 Edition), Edward N. Zalta (ed.), URL = <http://​plato.​stanford.​edu/​archives/​sum2010/​entries/​cognitive-science/​>.
 
2
Agent Based Models are the most important development in this direction, where a complex dynamical system is represented by interacting, in general adaptive, agents. Examples of such systems are in physics: turbulence, percolation, sand pile, weather; in biology: cells organs (including brain), organisms, populations, ecosystems; and in the social sphere: language, organizations, and markets.
 
3
An extension of the basic Turing machine model introduced by (Turing 1939) which is the extension by oracles which enables new, external, and possibly noncomputable information to enter a computation. Such machines could compute an arbitrary non-recursive function from naturals to naturals. Turing showed that even in those more powerful systems, undecidability still appears. Oracle machines were only mathematical models, and were not thought of as physically realizable. The central ideas which (Cooper 2008) brings to this project are the concepts of definability and invariance in a context of the real-world computation. He is modeling causal relationships based on Turing's 1939 concept of interactive computation, which Cooper defines over reals.
 
4
“Focusing on interaction without representation, concentrating on computation beyond the 'Turing barrier', without climbing the higher levels which become the subject in a mathematical analysis of the structures of interaction (see e.g. Cooper)”—I am thankful for the anonymous reviewer for this remark.
 
6
(Hodges 2009) criticizes proposal by (Copeland and Proudfoot 1999) to use a physical device as an oracle, as Turing in (Turing 1939, p. 173) said: 'We shall not go any further into the nature of this oracle apart from saying that it cannot be a machine.'
 
7
For more details about new computational paradigms, and how “classical computability has expanded beyond its original scope to address issues related to computability and complexity in algebra, analysis, and physics”, see (Cooper et al. 2008).
 
8
Some authors identify the idea of computing universe with discrete computing, which is not necessarily the only possible interpretation. Lloyd for example argues that on the quantum mechanical level both continuum and discrete structures are necessary. Discrete models are abundant and very useful, but there are also models in physics which presuppose continuous descriptions.
 
Literatur
Zurück zum Zitat Abramsky, S. (1997). Semantics of interaction: An introduction to game semantics. In P. Dybjer & A. Pitts (Eds.), Proceedings of the 1996 CLiCS Summer School, Isaac Newton Institute (pp. 1–31). Cambridge: Cambridge University Press. Abramsky, S. (1997). Semantics of interaction: An introduction to game semantics. In P. Dybjer & A. Pitts (Eds.), Proceedings of the 1996 CLiCS Summer School, Isaac Newton Institute (pp. 1–31). Cambridge: Cambridge University Press.
Zurück zum Zitat Abramsky, S. (2003). Sequentiality versus concurrency in games and logic. Mathematical Structures in Computer Science, 13, 531–565.MathSciNetMATHCrossRef Abramsky, S. (2003). Sequentiality versus concurrency in games and logic. Mathematical Structures in Computer Science, 13, 531–565.MathSciNetMATHCrossRef
Zurück zum Zitat Abramsky, S. (2007). A compositional game semantics for multi-agent logics of imperfect information in interactive logic. In J. van Benthem, D. Gabbay, & B. Lowe (Eds.), Texts in logic and games, Vol. 1 (pp. 11–48). Amsterdam: Amsterdam University Press. Abramsky, S. (2007). A compositional game semantics for multi-agent logics of imperfect information in interactive logic. In J. van Benthem, D. Gabbay, & B. Lowe (Eds.), Texts in logic and games, Vol. 1 (pp. 11–48). Amsterdam: Amsterdam University Press.
Zurück zum Zitat Abramsky, S. (2008). Petri nets, discrete physics, and distributed quantum computation. In P. Degano, R. De Nicola and J. Meseguer (Eds.), Concurrency, graphs and models, essays dedicated to Ugo Montanari on the occasion of his 65th birthday, Vol. 5065 of lecture notes in computer science. Springer, 527–543. Abramsky, S. (2008). Petri nets, discrete physics, and distributed quantum computation. In P. Degano, R. De Nicola and J. Meseguer (Eds.), Concurrency, graphs and models, essays dedicated to Ugo Montanari on the occasion of his 65th birthday, Vol. 5065 of lecture notes in computer science. Springer, 527–543.
Zurück zum Zitat Abramsky, S., & Coecke, B. (2007). Physics from computer science, Int. Journal of Unconventional Computing, 3(3), 179–197. Abramsky, S., & Coecke, B. (2007). Physics from computer science, Int. Journal of Unconventional Computing, 3(3), 179–197.
Zurück zum Zitat Allo, P. (2007). Formalising semantic information. Lessons from logical pluralism. In G. Dodig-Crnkovic & S. Stuart (Eds.), Computation, information, cognition: The Nexus and the Liminal (pp. 41–52). Cambridge: Cambridge Scholars Publishing. Allo, P. (2007). Formalising semantic information. Lessons from logical pluralism. In G. Dodig-Crnkovic & S. Stuart (Eds.), Computation, information, cognition: The Nexus and the Liminal (pp. 41–52). Cambridge: Cambridge Scholars Publishing.
Zurück zum Zitat Ashby, W. R. (1964). An introduction to cybernetics. London: Methuen. Ashby, W. R. (1964). An introduction to cybernetics. London: Methuen.
Zurück zum Zitat Beall, J. C., & Restall, G. (2000). Logical pluralism. Australasian Journal of Philosophy, 78, 475–493.CrossRef Beall, J. C., & Restall, G. (2000). Logical pluralism. Australasian Journal of Philosophy, 78, 475–493.CrossRef
Zurück zum Zitat Benthem van, J. (2001). Extensive games as process models. In M. Pauly & P. Dekker, (Eds.), Special issue of Journal of logic, language and information, 11, 289–313. Benthem van, J. (2001). Extensive games as process models. In M. Pauly & P. Dekker, (Eds.), Special issue of Journal of logic, language and information, 11, 289–313.
Zurück zum Zitat Benthem van, J. (2003). Logic and the dynamics of information. Minds and Machines, 13, 503–519.CrossRef Benthem van, J. (2003). Logic and the dynamics of information. Minds and Machines, 13, 503–519.CrossRef
Zurück zum Zitat Benthem van, J. (2008). Logical pluralism meets logical dynamics? The Australasian Journal of Logic, 6, 182–209.MathSciNetMATH Benthem van, J. (2008). Logical pluralism meets logical dynamics? The Australasian Journal of Logic, 6, 182–209.MathSciNetMATH
Zurück zum Zitat Bohan Broderick, P. (2004). On communication and computation. Minds and Machines, 14, 1–19.MATHCrossRef Bohan Broderick, P. (2004). On communication and computation. Minds and Machines, 14, 1–19.MATHCrossRef
Zurück zum Zitat Bringsjord, S. (1994). Computation, among other things, is beneath us. Minds and Machines, 4, 469–488.CrossRef Bringsjord, S. (1994). Computation, among other things, is beneath us. Minds and Machines, 4, 469–488.CrossRef
Zurück zum Zitat Bringsjord, S., & Zenzen, M. (2002). Toward a formal philosophy of hypercomputation. Minds and Machines, 12, 241–258.MATHCrossRef Bringsjord, S., & Zenzen, M. (2002). Toward a formal philosophy of hypercomputation. Minds and Machines, 12, 241–258.MATHCrossRef
Zurück zum Zitat Burgin, M. (2005). Super-recursive algorithms. Springer Monographs in Computer Science. Burgin, M. (2005). Super-recursive algorithms. Springer Monographs in Computer Science.
Zurück zum Zitat Cantwell Smith, B. (1996). On the origin of objects. Cambridge, MA: MIT Press. Cantwell Smith, B. (1996). On the origin of objects. Cambridge, MA: MIT Press.
Zurück zum Zitat Chaitin, G. J. (2006). Epistemology as information theory: From Leibniz to Ω. Collapse, 1, 27–51. Chaitin, G. J. (2006). Epistemology as information theory: From Leibniz to Ω. Collapse, 1, 27–51.
Zurück zum Zitat Church, A. (1935). Abstract no. 204. Bulletin of the American Mathematical Society, 41, 332–333. Church, A. (1935). Abstract no. 204. Bulletin of the American Mathematical Society, 41, 332–333.
Zurück zum Zitat Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58, 345–363.MathSciNetCrossRef Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58, 345–363.MathSciNetCrossRef
Zurück zum Zitat Colburn, T. R., & Shute, G. M. (2008). Metaphor in computer science. Journal of Applied Logic, 6, 526–533.CrossRef Colburn, T. R., & Shute, G. M. (2008). Metaphor in computer science. Journal of Applied Logic, 6, 526–533.CrossRef
Zurück zum Zitat Cooper, S. B., Löwe, B., & Sorbi, A., Eds. (2008). New computational paradigms: Changing conceptions of what is computable. Springer. Cooper, S. B., Löwe, B., & Sorbi, A., Eds. (2008). New computational paradigms: Changing conceptions of what is computable. Springer.
Zurück zum Zitat Copeland, B. J., & Proudfoot, D. (1999). Alan Turing’s forgotten ideas in computer science. Scientific American, 280, 76–81.CrossRef Copeland, B. J., & Proudfoot, D. (1999). Alan Turing’s forgotten ideas in computer science. Scientific American, 280, 76–81.CrossRef
Zurück zum Zitat Copeland, B. J., & Shagrir, O. (2007). Physical computation: How general are Gandy’s principles for mechanisms? Minds and Machines, 17, 217–223.CrossRef Copeland, B. J., & Shagrir, O. (2007). Physical computation: How general are Gandy’s principles for mechanisms? Minds and Machines, 17, 217–223.CrossRef
Zurück zum Zitat Copeland, B. J., & Sylvan, R. (1999). Beyond the universal Turing machine. Australian Journal of Philosopy, 77, 46–67.MATHCrossRef Copeland, B. J., & Sylvan, R. (1999). Beyond the universal Turing machine. Australian Journal of Philosopy, 77, 46–67.MATHCrossRef
Zurück zum Zitat Dodig-Crnkovic, G., & Müller, V. (2010). A dialogue concerning two world systems: Info-computational versus mechanistic. In Information and computation. World Scientific, Singapore. Preprint available at: http://arxiv.org/abs/0910.5001 Dodig-Crnkovic, G., & Müller, V. (2010). A dialogue concerning two world systems: Info-computational versus mechanistic. In Information and computation. World Scientific, Singapore. Preprint available at: http://​arxiv.​org/​abs/​0910.​5001
Zurück zum Zitat Dodig-Crnkovic, G., & Stuart, S. (Eds.). (2007). Computation, information, cognition–The Nexus and the Liminal. Cambridge: Cambridge Scholar Press. Dodig-Crnkovic, G., & Stuart, S. (Eds.). (2007). Computation, information, cognition–The Nexus and the Liminal. Cambridge: Cambridge Scholar Press.
Zurück zum Zitat Floridi, L. (2004). Open problems in the philosophy of information. Metaphilosophy, 35.4, 554–582. Floridi, L. (2004). Open problems in the philosophy of information. Metaphilosophy, 35.4, 554–582.
Zurück zum Zitat Goldin, D., Smolka, S., & Wegner P. (Eds.). (2006). Interactive computation: The new paradigm. Springer-Verlag. Goldin, D., Smolka, S., & Wegner P. (Eds.). (2006). Interactive computation: The new paradigm. Springer-Verlag.
Zurück zum Zitat Goldin, D., & Wegner, P. (2002). Paraconsistency of interactive computation, PCL 2002 (Workshop on paraconsistent computational logic). Denmark. Goldin, D., & Wegner, P. (2002). Paraconsistency of interactive computation, PCL 2002 (Workshop on paraconsistent computational logic). Denmark.
Zurück zum Zitat Hintikka, J. (1973). Logic, language-games and information: Kantian themes in the philosophy of logic. Oxford: Clarendon Press.MATH Hintikka, J. (1973). Logic, language-games and information: Kantian themes in the philosophy of logic. Oxford: Clarendon Press.MATH
Zurück zum Zitat Hintikka, J. (1982). Game-theoretical semantics: Insights and prospects. Notre Dame Journal of Formal Logic, 23(2), 219–241.MathSciNetMATHCrossRef Hintikka, J. (1982). Game-theoretical semantics: Insights and prospects. Notre Dame Journal of Formal Logic, 23(2), 219–241.MathSciNetMATHCrossRef
Zurück zum Zitat Japaridze, G. (2006). In the beginning was game semantics. In O. Majer, A.-V. Pietarinen, & T. Tulenheimo (Eds.), Logic and games: Foundational perspectives. Berlin: Springer Verlag. Japaridze, G. (2006). In the beginning was game semantics. In O. Majer, A.-V. Pietarinen, & T. Tulenheimo (Eds.), Logic and games: Foundational perspectives. Berlin: Springer Verlag.
Zurück zum Zitat Kampis, G. (1991). Self-modifying systems in biology and cognitive science: A new framework for dynamics, information and complexity. Pergamon: Pergamon Press. Kampis, G. (1991). Self-modifying systems in biology and cognitive science: A new framework for dynamics, information and complexity. Pergamon: Pergamon Press.
Zurück zum Zitat Kuipers, T. A. F. (2006). Theories looking for domains. Fact or fiction? Structuralist truth approximation by revision of the domain of intended applications, to appear. In L. Magnani (ed.), Model-based reasoning in science and engineering. Kuipers, T. A. F. (2006). Theories looking for domains. Fact or fiction? Structuralist truth approximation by revision of the domain of intended applications, to appear. In L. Magnani (ed.), Model-based reasoning in science and engineering.
Zurück zum Zitat Lloyd, S. (2006). Programming the universe: A quantum computer scientist takes on the cosmos. In Alfred A. Knopf. Lloyd, S. (2006). Programming the universe: A quantum computer scientist takes on the cosmos. In Alfred A. Knopf.
Zurück zum Zitat MacLennan, B. (2004). Natural computation and non-Turing models of computation. Theoretical Computer Science, 317, 115–145.MathSciNetMATHCrossRef MacLennan, B. (2004). Natural computation and non-Turing models of computation. Theoretical Computer Science, 317, 115–145.MathSciNetMATHCrossRef
Zurück zum Zitat Milner, R. (1989). Communication and concurrency. Prentice-Hall: International Series in Computing Science.MATH Milner, R. (1989). Communication and concurrency. Prentice-Hall: International Series in Computing Science.MATH
Zurück zum Zitat Piccinini, G. (2007). Computational modeling versus computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy, 85(1), 93–115.MathSciNetCrossRef Piccinini, G. (2007). Computational modeling versus computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy, 85(1), 93–115.MathSciNetCrossRef
Zurück zum Zitat Rozenberg, G., & Kari, L. (2008). The many facets of natural computing. Communications of the ACM, 51, 72–83. Rozenberg, G., & Kari, L. (2008). The many facets of natural computing. Communications of the ACM, 51, 72–83.
Zurück zum Zitat Schachter, V. (1999). How does concurrency extend the paradigm of computation? Monist, 82(1), 37–58. Schachter, V. (1999). How does concurrency extend the paradigm of computation? Monist, 82(1), 37–58.
Zurück zum Zitat Sieg, W. (2007). Church without dogma–Axioms for computability. In B. Löwe, A. Sorbi, & S. B. Cooper (Eds.), New computational paradigms: Changing conceptions of what is computable (pp. 18–44). Heidelberg: Springer. Sieg, W. (2007). Church without dogma–Axioms for computability. In B. Löwe, A. Sorbi, & S. B. Cooper (Eds.), New computational paradigms: Changing conceptions of what is computable (pp. 18–44). Heidelberg: Springer.
Zurück zum Zitat Siegelman, H. T. (1999). Neural networks and analog computation. Berlin: Birkhauser. Siegelman, H. T. (1999). Neural networks and analog computation. Berlin: Birkhauser.
Zurück zum Zitat Turing A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. In Proceedings of the London mathematical society, Vol. 42, pp. 230–265; reprinted in A. M. Turing, Collected works: mathematical logic, 18–53. Turing A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. In Proceedings of the London mathematical society, Vol. 42, pp. 230–265; reprinted in A. M. Turing, Collected works: mathematical logic, 18–53.
Zurück zum Zitat Turing A. M. (1939). Systems of logic based on ordinals.In Proceedings of the London mathematical society, ser. 2, Vol. 45, 162–228. Turing A. M. (1939). Systems of logic based on ordinals.In Proceedings of the London mathematical society, ser. 2, Vol. 45, 162–228.
Zurück zum Zitat Wolfram, S. (2002) A new kind of science. Wolfram Science. Wolfram, S. (2002) A new kind of science. Wolfram Science.
Metadaten
Titel
Significance of Models of Computation, from Turing Model to Natural Computation
verfasst von
Gordana Dodig-Crnkovic
Publikationsdatum
01.05.2011
Verlag
Springer Netherlands
Erschienen in
Minds and Machines / Ausgabe 2/2011
Print ISSN: 0924-6495
Elektronische ISSN: 1572-8641
DOI
https://doi.org/10.1007/s11023-011-9235-1

Weitere Artikel der Ausgabe 2/2011

Minds and Machines 2/2011 Zur Ausgabe

OriginalPaper

Specification

Premium Partner