Skip to main content
Erschienen in: Journal of Materials Science 24/2019

05.09.2019 | Energy materials

Simple synthesis of TiNb6O17/C composite toward high-rate lithium storage

verfasst von: Ruixue Sun, Ying Tao, Hongxian Sun, Weihua Chen, Guangyin Liu, Yang Yue, Min Hu, Miao Liu

Erschienen in: Journal of Materials Science | Ausgabe 24/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As one kind of promising anode materials for Li-ion batteries, titanium niobium oxides have attracted great attention due to their high theoretical capacities and high rate performances. Herein, TiNb6O17/C composite with TiNb6O17 nanocrystals distributed among amorphous carbon has been synthesized via an in situ sol–gel and then thermal decomposition process. The as-synthesized TiNb6O17/C composite presents reduced crystal size and improved electronic conductivity compared with the pristine TiNb6O17. The TiNb6O17/C displays both excellent rate performance (high specific capacity of 129 mA h g−1 at 30 C) and good cyclic performance (low capacity decay rate of 0.016% per cycle for 500 cycles at 10 C). These results indicate that the approach as reported is a simple yet effective way for high-performance anode with high-rate capability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
2.
Zurück zum Zitat Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561CrossRef Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561CrossRef
3.
Zurück zum Zitat Chen C, Xie XQ, Anasori B et al (2018) MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew Chem Int Ed 57:1846–1850CrossRef Chen C, Xie XQ, Anasori B et al (2018) MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew Chem Int Ed 57:1846–1850CrossRef
4.
Zurück zum Zitat Zhu G, Zhao C, Huang J, He C, Zhang J, Chen S, Xu L, Yuan H, Zhang Q (2019) Fast charging lithium batteries: recent progress and future prospects. Small 15:1805389CrossRef Zhu G, Zhao C, Huang J, He C, Zhang J, Chen S, Xu L, Yuan H, Zhang Q (2019) Fast charging lithium batteries: recent progress and future prospects. Small 15:1805389CrossRef
5.
Zurück zum Zitat Wang L, Han JW, Kong D, Tao Y, Yang Q (2019) Enhanced roles of carbon architectures in high-performance lithium-ion batteries. Nano Micro Lett 11:5CrossRef Wang L, Han JW, Kong D, Tao Y, Yang Q (2019) Enhanced roles of carbon architectures in high-performance lithium-ion batteries. Nano Micro Lett 11:5CrossRef
6.
Zurück zum Zitat Liang J, Huo F, Zhang Z, Yang W, Javid M, Jung Y, Dong X, Cao G (2019) Controlling the phenolic resin-based amorphous carbon content for enhancing cycling stability of Si nanosheets @C anodes for lithium-ion batteries. Appl Surf Sci 476:1000–1007CrossRef Liang J, Huo F, Zhang Z, Yang W, Javid M, Jung Y, Dong X, Cao G (2019) Controlling the phenolic resin-based amorphous carbon content for enhancing cycling stability of Si nanosheets @C anodes for lithium-ion batteries. Appl Surf Sci 476:1000–1007CrossRef
7.
Zurück zum Zitat Shen S, Guo W, Xie D et al (2018) A synergistic vertical graphene skeleton and S–C shell to construct high-performance TiNb2O7-based core/shell arrays. J Mater Chem A 6:20195–20204CrossRef Shen S, Guo W, Xie D et al (2018) A synergistic vertical graphene skeleton and S–C shell to construct high-performance TiNb2O7-based core/shell arrays. J Mater Chem A 6:20195–20204CrossRef
8.
Zurück zum Zitat Idrees M, Batool S, Kong J et al (2018) Polyborosilazane derived ceramics—nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim Acta 296:925–937CrossRef Idrees M, Batool S, Kong J et al (2018) Polyborosilazane derived ceramics—nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim Acta 296:925–937CrossRef
10.
Zurück zum Zitat Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y (2018) Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 30:1705702CrossRef Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y (2018) Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 30:1705702CrossRef
11.
Zurück zum Zitat Liu X, Huang J, Zhang Q, Mai L (2017) Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater 29:1601759CrossRef Liu X, Huang J, Zhang Q, Mai L (2017) Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater 29:1601759CrossRef
12.
Zurück zum Zitat Mar M, Ahmad Y, Guérin K, Dubois M, Batisse N (2017) Fluorinated exfoliated graphite as cathode materials for enhanced performances in primary lithium battery. Electrochim Acta 227:18–23CrossRef Mar M, Ahmad Y, Guérin K, Dubois M, Batisse N (2017) Fluorinated exfoliated graphite as cathode materials for enhanced performances in primary lithium battery. Electrochim Acta 227:18–23CrossRef
13.
Zurück zum Zitat Cheng Q, Zhang Y (2018) Multi-channel graphite for high-rate lithium ion battery. J Electrochem Soc 165:A1104–A1109CrossRef Cheng Q, Zhang Y (2018) Multi-channel graphite for high-rate lithium ion battery. J Electrochem Soc 165:A1104–A1109CrossRef
14.
Zurück zum Zitat Ko M, Chae S, Ma JY, Kim N, Lee HW, Cui Y, Cho J (2016) Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat Energy 1:16113CrossRef Ko M, Chae S, Ma JY, Kim N, Lee HW, Cui Y, Cho J (2016) Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat Energy 1:16113CrossRef
15.
Zurück zum Zitat Mahmood N, Tang T, Hou Y (2016) Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Eng Mater 6:1600374CrossRef Mahmood N, Tang T, Hou Y (2016) Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Eng Mater 6:1600374CrossRef
16.
Zurück zum Zitat Novoselov K, Fal'ko V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490:192–200CrossRef Novoselov K, Fal'ko V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490:192–200CrossRef
17.
Zurück zum Zitat Zhang Q, Chen H, Luo L et al (2018) Harnessing the concurrent reaction dynamics inactive Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci 11:669–681CrossRef Zhang Q, Chen H, Luo L et al (2018) Harnessing the concurrent reaction dynamics inactive Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci 11:669–681CrossRef
18.
Zurück zum Zitat Zuo X, Zhu J, Buschbaum P, Cheng Y (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143CrossRef Zuo X, Zhu J, Buschbaum P, Cheng Y (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143CrossRef
19.
Zurück zum Zitat Wei Y, Huang L, He J, Guo Y, Qin R, Li H, Zhai T (2018) Healable structure triggered by thermal/electrochemical force in layered GeSe2 for high performance Li-ion batteries. Adv Eng Mater 8:1703635CrossRef Wei Y, Huang L, He J, Guo Y, Qin R, Li H, Zhai T (2018) Healable structure triggered by thermal/electrochemical force in layered GeSe2 for high performance Li-ion batteries. Adv Eng Mater 8:1703635CrossRef
20.
Zurück zum Zitat Zhang H, Huang X, Noonan O, Zhou L, Yu C (2017) Tailored yolk–shell Sn@C nanoboxes for high-performance lithium storage. Adv Funct Mater 27:1606023CrossRef Zhang H, Huang X, Noonan O, Zhou L, Yu C (2017) Tailored yolk–shell Sn@C nanoboxes for high-performance lithium storage. Adv Funct Mater 27:1606023CrossRef
21.
Zurück zum Zitat Xiao S, Zhang X, Zhang J, Wu S, Wang J, Chen J, Ting Li (2018) Enhancing the lithium storage capabilities of TiO2 nanoparticles using delaminated MXene supports. Ceram Int 44:17660–17666CrossRef Xiao S, Zhang X, Zhang J, Wu S, Wang J, Chen J, Ting Li (2018) Enhancing the lithium storage capabilities of TiO2 nanoparticles using delaminated MXene supports. Ceram Int 44:17660–17666CrossRef
22.
Zurück zum Zitat Jia C, Zhang X, Yang P (2018) Anatase/rutile-TiO2 hollow hierarchical architecture modified by SnO2 toward efficient lithium storage. Int J Hydrog Energy 43:2237–2246CrossRef Jia C, Zhang X, Yang P (2018) Anatase/rutile-TiO2 hollow hierarchical architecture modified by SnO2 toward efficient lithium storage. Int J Hydrog Energy 43:2237–2246CrossRef
23.
Zurück zum Zitat Deng X, Wei Z, Cui C, Liu Q, Wang C, Ma J (2018) Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J Mater Chem A 6:4013–4022CrossRef Deng X, Wei Z, Cui C, Liu Q, Wang C, Ma J (2018) Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J Mater Chem A 6:4013–4022CrossRef
24.
Zurück zum Zitat Zhang W, Zhang B, Jin H, Li P, Zhang Y, Ma S, Zhang J (2018) Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery. Ceram Int 44:20441–20448CrossRef Zhang W, Zhang B, Jin H, Li P, Zhang Y, Ma S, Zhang J (2018) Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery. Ceram Int 44:20441–20448CrossRef
25.
Zurück zum Zitat Hao Q, Wang Z, Ye J, Xu C (2017) Fe3O4/Ag microsheets assembled by interlaced nanothorns as high performance anode materials for lithium storage. Int J Hydrog Energy 42:10072–10080CrossRef Hao Q, Wang Z, Ye J, Xu C (2017) Fe3O4/Ag microsheets assembled by interlaced nanothorns as high performance anode materials for lithium storage. Int J Hydrog Energy 42:10072–10080CrossRef
26.
Zurück zum Zitat Liang H, Wang Z, Guo H, Li X (2017) Unique porous yolk–shell structured Co3O4 anode for high performance lithium ion batteries. Ceram Int 43:11058–11064CrossRef Liang H, Wang Z, Guo H, Li X (2017) Unique porous yolk–shell structured Co3O4 anode for high performance lithium ion batteries. Ceram Int 43:11058–11064CrossRef
27.
Zurück zum Zitat Zheng F, Wei L (2019) Synthesis of ultrafine Co3O4 nanoparticles encapsulated in nitrogen-doped porous carbon matrix as anodes for stable and long-life lithium ion battery. J Alloys Compd 790:955–962CrossRef Zheng F, Wei L (2019) Synthesis of ultrafine Co3O4 nanoparticles encapsulated in nitrogen-doped porous carbon matrix as anodes for stable and long-life lithium ion battery. J Alloys Compd 790:955–962CrossRef
28.
Zurück zum Zitat Zheng Y, Li Y, Yao J, Huang Y, Xiao S (2018) Facile synthesis of porous tubular NiO with considerable pseudocapacitance high capacity and long life anode for lithium-ion batteries. Ceram Int 44:2568–2577CrossRef Zheng Y, Li Y, Yao J, Huang Y, Xiao S (2018) Facile synthesis of porous tubular NiO with considerable pseudocapacitance high capacity and long life anode for lithium-ion batteries. Ceram Int 44:2568–2577CrossRef
29.
Zurück zum Zitat Yin X, Chen H, Zhi C, Sun W, Lv L, Wang Y (2018) Functionalized graphene quantum dot modification of yolk–shell NiO microspheres for superior lithium storage. Small 14:1800589CrossRef Yin X, Chen H, Zhi C, Sun W, Lv L, Wang Y (2018) Functionalized graphene quantum dot modification of yolk–shell NiO microspheres for superior lithium storage. Small 14:1800589CrossRef
30.
Zurück zum Zitat Li R, Zhu X, Fu Q et al (2019) Nanosheet-based Nb12O29 hierarchical microspheres for enhanced lithium storage. Chem Commun 55:2493–2496CrossRef Li R, Zhu X, Fu Q et al (2019) Nanosheet-based Nb12O29 hierarchical microspheres for enhanced lithium storage. Chem Commun 55:2493–2496CrossRef
31.
Zurück zum Zitat Kabtamu DM, Bayeh AW, Chiang T, Chang Y, Lin G, Wondimu TH, Su S, Wang C (2018) TiNb2O7 nanoparticle-decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. Appl Surf Sci 462:73–80CrossRef Kabtamu DM, Bayeh AW, Chiang T, Chang Y, Lin G, Wondimu TH, Su S, Wang C (2018) TiNb2O7 nanoparticle-decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. Appl Surf Sci 462:73–80CrossRef
32.
Zurück zum Zitat Liu G, Zhao L, Sun R, Chen W, Hu M, Liu M, Duan X, Zhang T (2018) Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life. Electrochim Acta 259:20–27CrossRef Liu G, Zhao L, Sun R, Chen W, Hu M, Liu M, Duan X, Zhang T (2018) Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life. Electrochim Acta 259:20–27CrossRef
33.
Zurück zum Zitat Yu H, Lan H, Yan L, Qian S, Cheng X, Zhu H, Long N, Shui M, Shu J (2017) TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries. Nano Energy 38:109–117CrossRef Yu H, Lan H, Yan L, Qian S, Cheng X, Zhu H, Long N, Shui M, Shu J (2017) TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries. Nano Energy 38:109–117CrossRef
34.
Zurück zum Zitat Lin C, Hu L, Cheng C et al (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72CrossRef Lin C, Hu L, Cheng C et al (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72CrossRef
35.
Zurück zum Zitat Chen Y, Zhang H, Li Y, Chen Y, Luo T (2017) Electrochemical performance of Li4Ti5O12/carbon nanotubes/graphene composite as an anode material in lithium-ion batteries. Int J Hydrog Energy 42:7195–7201CrossRef Chen Y, Zhang H, Li Y, Chen Y, Luo T (2017) Electrochemical performance of Li4Ti5O12/carbon nanotubes/graphene composite as an anode material in lithium-ion batteries. Int J Hydrog Energy 42:7195–7201CrossRef
36.
Zurück zum Zitat Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci 5:1700592CrossRef Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci 5:1700592CrossRef
37.
Zurück zum Zitat Zhu S, Li J, Deng X, He C, Liu E, He F, Shi C, Zhao N (2017) Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adv Funct Mater 27:1605017CrossRef Zhu S, Li J, Deng X, He C, Liu E, He F, Shi C, Zhao N (2017) Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adv Funct Mater 27:1605017CrossRef
38.
Zurück zum Zitat Li H, Zhang Y, Tang Y, Zhao F, Zhao B, Hu Y, Murat H, Gao S, Liu L (2019) TiNb2O7 nanowires with high electrochemical performances as anodes for lithium ion batteries. Appl Surf Sci 475:942–946CrossRef Li H, Zhang Y, Tang Y, Zhao F, Zhao B, Hu Y, Murat H, Gao S, Liu L (2019) TiNb2O7 nanowires with high electrochemical performances as anodes for lithium ion batteries. Appl Surf Sci 475:942–946CrossRef
39.
Zurück zum Zitat Hu L, Luo L, Tang L, Lin C, Li R, Chen Y (2018) Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. J Mater Chem A 6:9799–9815CrossRef Hu L, Luo L, Tang L, Lin C, Li R, Chen Y (2018) Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. J Mater Chem A 6:9799–9815CrossRef
40.
Zurück zum Zitat Liu X, Liu M, Hu Y, Hu M, Duan X, Liu G, Ma J (2019) Mesoporous Ti2Nb10O29 microspheres constructed by interconnected nanoparticles as high performance anode material for lithium ion batteries. Ceram Int 45:3574–3581CrossRef Liu X, Liu M, Hu Y, Hu M, Duan X, Liu G, Ma J (2019) Mesoporous Ti2Nb10O29 microspheres constructed by interconnected nanoparticles as high performance anode material for lithium ion batteries. Ceram Int 45:3574–3581CrossRef
41.
Zurück zum Zitat Yu H, Cheng X, Zhu H et al (2018) Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy 54:227–237CrossRef Yu H, Cheng X, Zhu H et al (2018) Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy 54:227–237CrossRef
42.
Zurück zum Zitat Han J, Huang Y, Goodenough JB (2011) New anode framework for rechargeable lithium batteries. Chem Mater 23:2027–2029CrossRef Han J, Huang Y, Goodenough JB (2011) New anode framework for rechargeable lithium batteries. Chem Mater 23:2027–2029CrossRef
43.
Zurück zum Zitat Lou S, Cheng X, Zhao Y et al (2017) Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34:15–25CrossRef Lou S, Cheng X, Zhao Y et al (2017) Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34:15–25CrossRef
44.
Zurück zum Zitat Yuan Y, Yu H, Cheng X et al (2019) Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage. Chem Eng J 374:937–946CrossRef Yuan Y, Yu H, Cheng X et al (2019) Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage. Chem Eng J 374:937–946CrossRef
45.
Zurück zum Zitat Xia X, Deng S, Feng S, Wu J, Tu J (2017) Hierarchical porous Ti2Nb10O29 nanospheres as superior anode materials for lithium ion storage. J Mater Chem A 5:21134–21139CrossRef Xia X, Deng S, Feng S, Wu J, Tu J (2017) Hierarchical porous Ti2Nb10O29 nanospheres as superior anode materials for lithium ion storage. J Mater Chem A 5:21134–21139CrossRef
46.
Zurück zum Zitat Deng S, Chao D, Zhong Y, Zeng Y, Yao Z, Zhan J, Wang Y, Wang X, Lu X, Xia X, Tu J (2018) Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Mater 12:137–144CrossRef Deng S, Chao D, Zhong Y, Zeng Y, Yao Z, Zhan J, Wang Y, Wang X, Lu X, Xia X, Tu J (2018) Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Mater 12:137–144CrossRef
47.
Zurück zum Zitat Lin C, Wang G, Lin S, Li J, Lu L (2015) TiNb6O17: a new electrode material for lithium-ion batteries. Chem Commun 51:8970–8973CrossRef Lin C, Wang G, Lin S, Li J, Lu L (2015) TiNb6O17: a new electrode material for lithium-ion batteries. Chem Commun 51:8970–8973CrossRef
48.
Zurück zum Zitat Mao W, Bao K, Wang L et al (2016) Synthesis of TiNb6O17/C composite with enhanced rate capability for lithium ion batteries. Ceram Int 42:16935–16940CrossRef Mao W, Bao K, Wang L et al (2016) Synthesis of TiNb6O17/C composite with enhanced rate capability for lithium ion batteries. Ceram Int 42:16935–16940CrossRef
49.
Zurück zum Zitat Lee YS, Ryu KS (2017) Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery. Sci Rep 7:16617CrossRef Lee YS, Ryu KS (2017) Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery. Sci Rep 7:16617CrossRef
50.
Zurück zum Zitat Hou C, Tai Z, Zhao L et al (2018) High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J Mater Chem A 6:9723–9736CrossRef Hou C, Tai Z, Zhao L et al (2018) High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J Mater Chem A 6:9723–9736CrossRef
51.
Zurück zum Zitat Kang J, Kim J, Lee S, Wi S, Kim C, Hyun S, Nam S, Park Y, Park B (2017) Breathable carbon-free electrode: black TiO2 with hierarchically ordered porous structure for stable Li–O2 battery. Adv Eng Mater 7:1700814CrossRef Kang J, Kim J, Lee S, Wi S, Kim C, Hyun S, Nam S, Park Y, Park B (2017) Breathable carbon-free electrode: black TiO2 with hierarchically ordered porous structure for stable Li–O2 battery. Adv Eng Mater 7:1700814CrossRef
52.
Zurück zum Zitat Zhang Y, Ding Z, Foster CW, Banks CE, Qiu X, Ji X (2017) Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv Funct Mater 27:1700856CrossRef Zhang Y, Ding Z, Foster CW, Banks CE, Qiu X, Ji X (2017) Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv Funct Mater 27:1700856CrossRef
53.
Zurück zum Zitat Zhang X, Deng S, Zeng Y, Yu M, Zhong Y, Xia X, Tong Y, Lu X (2018) Oxygen defect modulated titanium niobium oxide on graphene arrays: an open-door for high-performance 1.4 V symmetric supercapacitor in acidic aqueous electrolyte. Adv Funct Mater 28:1805618CrossRef Zhang X, Deng S, Zeng Y, Yu M, Zhong Y, Xia X, Tong Y, Lu X (2018) Oxygen defect modulated titanium niobium oxide on graphene arrays: an open-door for high-performance 1.4 V symmetric supercapacitor in acidic aqueous electrolyte. Adv Funct Mater 28:1805618CrossRef
Metadaten
Titel
Simple synthesis of TiNb6O17/C composite toward high-rate lithium storage
verfasst von
Ruixue Sun
Ying Tao
Hongxian Sun
Weihua Chen
Guangyin Liu
Yang Yue
Min Hu
Miao Liu
Publikationsdatum
05.09.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03939-1

Weitere Artikel der Ausgabe 24/2019

Journal of Materials Science 24/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.