Skip to main content

2022 | OriginalPaper | Buchkapitel

Simulation and Optimization Study on Polishing of Spherical Steel by Non-newtonian Fluids

verfasst von : Duc-Nam Nguyen, Ngoc Thoai Tran, Thanh-Phong Dao

Erschienen in: Numerical Modelling and Optimization in Advanced Manufacturing Processes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The spherical surfaces will become important in the areas of industrial production such as jet engines, optical lenses, mould techniques, artificial knee joints, and bearings. These surfaces require high surface quality and form accuracy for the application process. To improve machining quality, the non-Newtonian fluid polishing methods are used to polish the complex surfaces. The process utilizing the shear thickening effect of non-Newtonian fluid based on abrasive slurries to achieve low surface roughness of product. During machining, the main factors affecting the surface quality of workpieces and material removal rate include polishing angles (A), work gap between the workpiece and bottom of the polishing tank (G), and tank velocity (V). The effects of these factors on the machining process are simulated by ANSYS software. The cutting pressure (P) and polishing velocity (Vm) will be discussed and analyzed in this chapter. Finally, the multi-responses optimization is utilized to optimize the maximum pressures and polishing velocity on the workpiece surfaces in machining process. Based on the simulation and optimization results, the best machining parameters were established for improving the maximum pressure and polishing velocity which is distributed on the workpiece surface in polishing process. Moreover, the optimal parameters that are determined during the simulation will be a good support for establishing the conditions for the next experiment process. It was found that the optimal parameters for polishing spherical steel with better pressure and polishing velocity are polishing angle of 13.34°, work gap of 14.25 mm and tank velocity of 2.2 m/s.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang, T., Cheng, J., Liu, H., et al.: Ultra-precision grinding machine design and application in grinding the thin-walled complex component with small ball-end diamond wheel. Int. J. Adv. Manuf. Technol. 101, 2097–2110 (2019)CrossRef Wang, T., Cheng, J., Liu, H., et al.: Ultra-precision grinding machine design and application in grinding the thin-walled complex component with small ball-end diamond wheel. Int. J. Adv. Manuf. Technol. 101, 2097–2110 (2019)CrossRef
2.
Zurück zum Zitat Chen, S., Cheung, C.F., Zhang, F., et al.: Optimization of tool path for uniform scallop-height in ultra-precision grinding of free-form surfaces. Nanomanuf. Metrol. 2, 215–224 (2019)CrossRef Chen, S., Cheung, C.F., Zhang, F., et al.: Optimization of tool path for uniform scallop-height in ultra-precision grinding of free-form surfaces. Nanomanuf. Metrol. 2, 215–224 (2019)CrossRef
3.
Zurück zum Zitat Yan, G., You, K., Fang, F.: Three-linear-axis grinding of small aperture aspheric surfaces. Int. J. Precis. Eng. Manuf. Green Tech. 7, 997–1008 (2020) Yan, G., You, K., Fang, F.: Three-linear-axis grinding of small aperture aspheric surfaces. Int. J. Precis. Eng. Manuf. Green Tech. 7, 997–1008 (2020)
4.
Zurück zum Zitat Wang, J., Zhao, Q., Zhang, C., et al.: Arc envelope grinding of sapphire steep aspheric surface with SiC-reinforced resin-bonded diamond wheel. Int. J. Precis. Eng. Manuf. Green Tech. (2020) Wang, J., Zhao, Q., Zhang, C., et al.: Arc envelope grinding of sapphire steep aspheric surface with SiC-reinforced resin-bonded diamond wheel. Int. J. Precis. Eng. Manuf. Green Tech. (2020)
5.
Zurück zum Zitat Bukieda, P., Lohr, K., Meiberg, J., et al.: Study on the optical quality and strength of glass edges after the grinding and polishing process. Glass Struct. Eng. 5, 411–428 (2020)CrossRef Bukieda, P., Lohr, K., Meiberg, J., et al.: Study on the optical quality and strength of glass edges after the grinding and polishing process. Glass Struct. Eng. 5, 411–428 (2020)CrossRef
6.
Zurück zum Zitat Yuan, J., Yao, W., Zhao, P., et al.: Kinematics and trajectory of both-sides cylindrical lapping process in planetary motion type. Int. J. Mach. Tools Manuf. 92(1), 60–71 (2015)CrossRef Yuan, J., Yao, W., Zhao, P., et al.: Kinematics and trajectory of both-sides cylindrical lapping process in planetary motion type. Int. J. Mach. Tools Manuf. 92(1), 60–71 (2015)CrossRef
7.
Zurück zum Zitat Yao, W., Yuan, J,, Zhou, F., et al.: Trajectory analysis and experiments of both-sides cylindrical lapping in eccentric rotation. Int. J. Adv. Manuf. Technol. 88(9–12), 2849–2859 (2017) Yao, W., Yuan, J,, Zhou, F., et al.: Trajectory analysis and experiments of both-sides cylindrical lapping in eccentric rotation. Int. J. Adv. Manuf. Technol. 88(9–12), 2849–2859 (2017)
8.
Zurück zum Zitat Jiang, L., Yao, W., He, Y., et al.: An experimental investigation of double-side processing of cylindrical rollers using chemical mechanical polishing technique. Int. J. Adv. Manuf. Technol. 82(1–4), 523–534 (2016)CrossRef Jiang, L., Yao, W., He, Y., et al.: An experimental investigation of double-side processing of cylindrical rollers using chemical mechanical polishing technique. Int. J. Adv. Manuf. Technol. 82(1–4), 523–534 (2016)CrossRef
9.
Zurück zum Zitat Nguyen, D.N., Chau, N.L., Dao, T.P., Chander, P., Sunpreet, S. Experimental study on polishing process of cylindrical roller bearings Meas. Control 1–10 (2019) Nguyen, D.N., Chau, N.L., Dao, T.P., Chander, P., Sunpreet, S. Experimental study on polishing process of cylindrical roller bearings Meas. Control 1–10 (2019)
10.
Zurück zum Zitat Nguyen, D.N.: Study on improving the precision of form surface produced in elastic deformation molding process. Int. J. Adv. Manuf. Technol. 93(9–12), 3473–3484 (2017)CrossRef Nguyen, D.N.: Study on improving the precision of form surface produced in elastic deformation molding process. Int. J. Adv. Manuf. Technol. 93(9–12), 3473–3484 (2017)CrossRef
11.
Zurück zum Zitat Nguyen, D.N., Yuan, J.L., Wu, Z.: Experimental study on elastic deformation molding process for generating aspheric surface glass. Int. J. Adv. Manuf. Technol 82(5–8), 859–866 (2016)CrossRef Nguyen, D.N., Yuan, J.L., Wu, Z.: Experimental study on elastic deformation molding process for generating aspheric surface glass. Int. J. Adv. Manuf. Technol 82(5–8), 859–866 (2016)CrossRef
12.
Zurück zum Zitat Nguyen, D.N., Lv, B.H., Yuan, J.L., Wu, Z., Lu, H.Z.: Experimental study on elastic deformation machining process for aspheric surface glass. Int. J. Adv. Manuf. Technol. 65(1–4), 525–531 (2013)CrossRef Nguyen, D.N., Lv, B.H., Yuan, J.L., Wu, Z., Lu, H.Z.: Experimental study on elastic deformation machining process for aspheric surface glass. Int. J. Adv. Manuf. Technol. 65(1–4), 525–531 (2013)CrossRef
13.
Zurück zum Zitat Wu, Z., Yuan, J.L., Lv, B.H., Nguyen, D.N.: Research on material removal characteristics in plane lapping method for aspherical surface using elastic deformation. Key Eng. Mater. 487, 293–297 (2011)CrossRef Wu, Z., Yuan, J.L., Lv, B.H., Nguyen, D.N.: Research on material removal characteristics in plane lapping method for aspherical surface using elastic deformation. Key Eng. Mater. 487, 293–297 (2011)CrossRef
14.
Zurück zum Zitat Guo, C.Y., Gong, X.L., Xuan, S.H., Qin, L.J., Yan, Q.F.: Compression behaviors of-magnetorheological fluids under nonuniformmagnetic field. Rheol. Acta 52(2), 165–176 (2013)CrossRef Guo, C.Y., Gong, X.L., Xuan, S.H., Qin, L.J., Yan, Q.F.: Compression behaviors of-magnetorheological fluids under nonuniformmagnetic field. Rheol. Acta 52(2), 165–176 (2013)CrossRef
15.
Zurück zum Zitat Wang, Y., Yin, S., Hu, T.: Ultra-precision finishing of optical mold by magnetorheolog-Ical polishing using a cylindrical permanent magnet. Int. J. Adv. Manuf. Technol. 97, 3583–3594 (2018)CrossRef Wang, Y., Yin, S., Hu, T.: Ultra-precision finishing of optical mold by magnetorheolog-Ical polishing using a cylindrical permanent magnet. Int. J. Adv. Manuf. Technol. 97, 3583–3594 (2018)CrossRef
16.
Zurück zum Zitat Chana1, A., Singh, A.K.: Magnetorheological nano-finishing of tube extrusion punch for improving its functional applications in press machine. Int. J. Adv. Manuf. Technol. 103, 2037–2052 (2019) Chana1, A., Singh, A.K.: Magnetorheological nano-finishing of tube extrusion punch for improving its functional applications in press machine. Int. J. Adv. Manuf. Technol. 103, 2037–2052 (2019)
17.
Zurück zum Zitat Kordonski, W.I., Golini, D.: Progress update in magnetorheological finishing. Int. J. Mod. Phys. B 13, 2205–2212 (2012)CrossRef Kordonski, W.I., Golini, D.: Progress update in magnetorheological finishing. Int. J. Mod. Phys. B 13, 2205–2212 (2012)CrossRef
18.
Zurück zum Zitat Luo, H., Guo, M.J., Yin, S.H., Chen, F.J., Huang, S., Lu, A.G., et al.: An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing. Appl. Surf. Sci. 444, 569–577 (2018)CrossRef Luo, H., Guo, M.J., Yin, S.H., Chen, F.J., Huang, S., Lu, A.G., et al.: An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing. Appl. Surf. Sci. 444, 569–577 (2018)CrossRef
19.
Zurück zum Zitat Kubota, A., Mimura, H., Inagaki, K., et al.: Preparation of ultrasmooth and defect-free 4H-SiC(0001) surfaces by elastic emission machining. J. Electron. Mater. 34, 439–443 (2005)CrossRef Kubota, A., Mimura, H., Inagaki, K., et al.: Preparation of ultrasmooth and defect-free 4H-SiC(0001) surfaces by elastic emission machining. J. Electron. Mater. 34, 439–443 (2005)CrossRef
20.
Zurück zum Zitat Kubota, A., Shinbayashi, Y., Mimura, H., et al.: Investigation of the surface removal process of silicon carbide in elastic emission machining. J. Electron. Mater. 36, 92–97 (2007)CrossRef Kubota, A., Shinbayashi, Y., Mimura, H., et al.: Investigation of the surface removal process of silicon carbide in elastic emission machining. J. Electron. Mater. 36, 92–97 (2007)CrossRef
21.
Zurück zum Zitat Lee, J., Lai., J.: The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel. J. Mater. Process. Technol. 140, 206–210 (2003) Lee, J., Lai., J.: The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel. J. Mater. Process. Technol. 140, 206–210 (2003)
22.
Zurück zum Zitat Han, Y., Mei, J., Peng, Q., Han, E., Ke, W.: Effect of electropolishing on corrosion of Alloy 600 in high temperature water. Corros. Sci. 98, 72–80 (2015)CrossRef Han, Y., Mei, J., Peng, Q., Han, E., Ke, W.: Effect of electropolishing on corrosion of Alloy 600 in high temperature water. Corros. Sci. 98, 72–80 (2015)CrossRef
23.
Zurück zum Zitat Cao, Z.C., Cheung, C.F.: Multi-scale modeling and simulation of material removal characteristics in computer-controlled bonnet polishing. Int. J. Mech. Sci. 106, 147–156 (2016)CrossRef Cao, Z.C., Cheung, C.F.: Multi-scale modeling and simulation of material removal characteristics in computer-controlled bonnet polishing. Int. J. Mech. Sci. 106, 147–156 (2016)CrossRef
24.
Zurück zum Zitat Motohiro, I., Atsushi, M., Anthony, B.: Study on removal mechanism at the tool rotational center in bonnet polishing of glass. Wear 454–455, 203321 (2020) Motohiro, I., Atsushi, M., Anthony, B.: Study on removal mechanism at the tool rotational center in bonnet polishing of glass. Wear 454–455, 203321 (2020)
25.
Zurück zum Zitat Xie, D.G., Gao, B., Yao, Y.X., Yuan, Z.J.: Study of local material removal model of bonnet tool polishing. Key Eng. Mater. 304–305, 335–339 (2006)CrossRef Xie, D.G., Gao, B., Yao, Y.X., Yuan, Z.J.: Study of local material removal model of bonnet tool polishing. Key Eng. Mater. 304–305, 335–339 (2006)CrossRef
26.
Zurück zum Zitat Zhang, W.: Research on digital simulation and experiment of removal function of bonnet tool polishing. J. Mech. Eng. 45(2), 308–312 (2009)CrossRef Zhang, W.: Research on digital simulation and experiment of removal function of bonnet tool polishing. J. Mech. Eng. 45(2), 308–312 (2009)CrossRef
27.
Zurück zum Zitat Zou, Y., Xie, H.J., Dong, C.W., Wu, J.Z.: Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field. Int. J. Adv. Manuf. Technol. 97(5–8), 2193–2202 (2018)CrossRef Zou, Y., Xie, H.J., Dong, C.W., Wu, J.Z.: Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field. Int. J. Adv. Manuf. Technol. 97(5–8), 2193–2202 (2018)CrossRef
28.
Zurück zum Zitat Chang, G.W., Yan, B.H., Hsu, R.T.: Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasive. Int. J. Mach. Tools Manuf. 42(5), 575–583 (2002)CrossRef Chang, G.W., Yan, B.H., Hsu, R.T.: Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasive. Int. J. Mach. Tools Manuf. 42(5), 575–583 (2002)CrossRef
29.
Zurück zum Zitat Yamaguchi, H., Shinmura, T.: Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process. Precis Eng. 28(2), 135–142 (2004)CrossRef Yamaguchi, H., Shinmura, T.: Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process. Precis Eng. 28(2), 135–142 (2004)CrossRef
30.
Zurück zum Zitat Li, W.H., Li, X.H., Yang, S.Q., Li, W.D.: A newly developed media for magnetic abrasive finishing process: material removal behavior and finishing performance. J. Mater. Process Technol. 260, 20–29 (2018)CrossRef Li, W.H., Li, X.H., Yang, S.Q., Li, W.D.: A newly developed media for magnetic abrasive finishing process: material removal behavior and finishing performance. J. Mater. Process Technol. 260, 20–29 (2018)CrossRef
31.
Zurück zum Zitat Gurgen, S., Sofuoglu, M.A., Kushan, M.C.: Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater. Struct. 28, 035027 (2019) Gurgen, S., Sofuoglu, M.A., Kushan, M.C.: Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater. Struct. 28, 035027 (2019)
32.
Zurück zum Zitat Laha, A., Majumdar, A.: Interactive effects of p-aramid fabric structure and shear thickening fluid on impact resistance performance of soft armor materials. Mater. Des. 89, 286–329 (2016)CrossRef Laha, A., Majumdar, A.: Interactive effects of p-aramid fabric structure and shear thickening fluid on impact resistance performance of soft armor materials. Mater. Des. 89, 286–329 (2016)CrossRef
33.
Zurück zum Zitat Zhang, X., Li, W., Gong, X.: The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper. Smart Mater. Struct. 17(3), 035027 (2008) Zhang, X., Li, W., Gong, X.: The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper. Smart Mater. Struct. 17(3), 035027 (2008)
34.
Zurück zum Zitat Gurgen, S., Sofuolu, A.: Integration of shear thickening fluid into cutting tools for improved turning operations. J. Manuf. Process 56, 1146–1154 (2020)CrossRef Gurgen, S., Sofuolu, A.: Integration of shear thickening fluid into cutting tools for improved turning operations. J. Manuf. Process 56, 1146–1154 (2020)CrossRef
35.
Zurück zum Zitat Crawford, N.C., Williams, S., Boldridge, D., Liberatore, M.W.: Shear thickening of chemical mechanical polishing slurries under high shear. Rheol. Acta 51(7), 637–647 (2012)CrossRef Crawford, N.C., Williams, S., Boldridge, D., Liberatore, M.W.: Shear thickening of chemical mechanical polishing slurries under high shear. Rheol. Acta 51(7), 637–647 (2012)CrossRef
36.
Zurück zum Zitat Span, J., Koshy, P., Klocke, F., Müller, S., Coelho, R.: Dynamic jamming in dense suspensions: surface finishing and edge honing applications. CIRP Ann. 66(1), 321–324 (2017)CrossRef Span, J., Koshy, P., Klocke, F., Müller, S., Coelho, R.: Dynamic jamming in dense suspensions: surface finishing and edge honing applications. CIRP Ann. 66(1), 321–324 (2017)CrossRef
37.
Zurück zum Zitat Nguyen, D.N.: Simulation and experimental study on polishing of spherical steel by non-Newtonian fluids. Int. J. Adv. Manuf. Technol. 107, 763–773 (2020)CrossRef Nguyen, D.N.: Simulation and experimental study on polishing of spherical steel by non-Newtonian fluids. Int. J. Adv. Manuf. Technol. 107, 763–773 (2020)CrossRef
38.
Zurück zum Zitat Nguyen, D.N., Dao, T.P., Prakash, C., Singh, S., Pramanik, A., Krolczyk, G., Pruncu, C.: Machining parameter optimization in shear thickening polishing of gear surfaces. J. Mater. Res. Technol. 9(3), 5112–5126 (2020)CrossRef Nguyen, D.N., Dao, T.P., Prakash, C., Singh, S., Pramanik, A., Krolczyk, G., Pruncu, C.: Machining parameter optimization in shear thickening polishing of gear surfaces. J. Mater. Res. Technol. 9(3), 5112–5126 (2020)CrossRef
39.
Zurück zum Zitat Lyu, B.H., He, Q.K., Chen, S.H., et al.: Experimental study on shear thickening polishing of cemented carbide insert with complex shape. Int. J. Adv. Manuf. Technol. 103, 585–595 (2019)CrossRef Lyu, B.H., He, Q.K., Chen, S.H., et al.: Experimental study on shear thickening polishing of cemented carbide insert with complex shape. Int. J. Adv. Manuf. Technol. 103, 585–595 (2019)CrossRef
40.
Zurück zum Zitat Lyu, B.H., Shao, Q., Hang, W., et al.: Shear thickening polishing of black lithium tantalite substrate. Int. J. Precis. Eng. Manuf. 21, 1663–1675 (2020)CrossRef Lyu, B.H., Shao, Q., Hang, W., et al.: Shear thickening polishing of black lithium tantalite substrate. Int. J. Precis. Eng. Manuf. 21, 1663–1675 (2020)CrossRef
41.
Zurück zum Zitat Shao, Q., Lyu, B.H., Yuan, J.L., Wang, X., Ke, M., Zhao, P.: Shear thickening polishing of the concave surface of high-temperature nickel-based alloy turbine blade. J. Mater. Res. Technol. 11, 72–84 (2021)CrossRef Shao, Q., Lyu, B.H., Yuan, J.L., Wang, X., Ke, M., Zhao, P.: Shear thickening polishing of the concave surface of high-temperature nickel-based alloy turbine blade. J. Mater. Res. Technol. 11, 72–84 (2021)CrossRef
42.
Zurück zum Zitat Sanjeev, K., Lalta, P., Sandeep, K., Vinay, K.: Physico-mechanical and Taguchi-designed sliding wear properties of Himalayan agave fiber reinforced polyester composite. J. Mater. Res. Technol. 8, 3662–3671 (2019)CrossRef Sanjeev, K., Lalta, P., Sandeep, K., Vinay, K.: Physico-mechanical and Taguchi-designed sliding wear properties of Himalayan agave fiber reinforced polyester composite. J. Mater. Res. Technol. 8, 3662–3671 (2019)CrossRef
43.
Zurück zum Zitat Nguyen, D.N., Ho, N.L., Dao, T.P., Chau, N.L.: Multi-objective optimization design for a sand crab-inspired compliant microgripper. Microsyst. Technol. 25, 3991–4009 (2019)CrossRef Nguyen, D.N., Ho, N.L., Dao, T.P., Chau, N.L.: Multi-objective optimization design for a sand crab-inspired compliant microgripper. Microsyst. Technol. 25, 3991–4009 (2019)CrossRef
44.
Zurück zum Zitat Shin, H., Yoo, D., Lee, J., Lee, S., Yoon, Y.: Optimized mix design for 180 MPa ultra-high-strength concrete. J. Mater. Res. Technol. 8, 4182–4197 (2019)CrossRef Shin, H., Yoo, D., Lee, J., Lee, S., Yoon, Y.: Optimized mix design for 180 MPa ultra-high-strength concrete. J. Mater. Res. Technol. 8, 4182–4197 (2019)CrossRef
45.
Zurück zum Zitat Singh, S., Singh, M., Prakash, C., Gupta, M.K., Mia, M., Singh, R.: Optimization and reliability analysis to improve surface quality and mechanical characteristics of heat-treated fused filament fabricated parts. Int. J. Adv. Manuf. Technol. 102, 1521–1536 (2019)CrossRef Singh, S., Singh, M., Prakash, C., Gupta, M.K., Mia, M., Singh, R.: Optimization and reliability analysis to improve surface quality and mechanical characteristics of heat-treated fused filament fabricated parts. Int. J. Adv. Manuf. Technol. 102, 1521–1536 (2019)CrossRef
46.
Zurück zum Zitat Pramanik, A., Islam, M.N., Basak, A.K., Dong, Y., Littlefair, G., Prakash, C.: Optimizing dimensional accuracy of titanium alloy features produced by wire electrical discharge machining. Mater. Manuf. Process. 34, 1083–1090 (2019)CrossRef Pramanik, A., Islam, M.N., Basak, A.K., Dong, Y., Littlefair, G., Prakash, C.: Optimizing dimensional accuracy of titanium alloy features produced by wire electrical discharge machining. Mater. Manuf. Process. 34, 1083–1090 (2019)CrossRef
47.
Zurück zum Zitat Prakash, C., Kansal, H.K., Pabla, B.S., Sanjeev, P.: Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J. Mech. Sci. Technol. 30, 4195–4204 (2016)CrossRef Prakash, C., Kansal, H.K., Pabla, B.S., Sanjeev, P.: Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J. Mech. Sci. Technol. 30, 4195–4204 (2016)CrossRef
48.
Zurück zum Zitat Nguyen, D.N., Dao, T.P., Chau, N.L., Dang, V.A.: Hybrid approach of finite element method, Kigring metamodel, and multiobjective genetic algorithm for computational optimization of a flexure elbow joint for upper-limb assistive device. Complexity 1–13 (2019) Nguyen, D.N., Dao, T.P., Chau, N.L., Dang, V.A.: Hybrid approach of finite element method, Kigring metamodel, and multiobjective genetic algorithm for computational optimization of a flexure elbow joint for upper-limb assistive device. Complexity 1–13 (2019)
49.
Zurück zum Zitat Tamilselvi, S., Baskar, S., Anandapadmanaban, L., Karthikeyan, V., Rajasekar, S.: Multi objective evolutionary algorithm for designing energy efficient distribution transformers. Swarm Evol. Comput. 42, 109–124 (2018)CrossRef Tamilselvi, S., Baskar, S., Anandapadmanaban, L., Karthikeyan, V., Rajasekar, S.: Multi objective evolutionary algorithm for designing energy efficient distribution transformers. Swarm Evol. Comput. 42, 109–124 (2018)CrossRef
50.
Zurück zum Zitat Li, M., Lyu, B.H., Yuan, J.L., Dong, C.C., Dai, W.T.: Shear-thickening polishing method. Int. J. Mach. Tool Manuf. 94, 88–99 (2015)CrossRef Li, M., Lyu, B.H., Yuan, J.L., Dong, C.C., Dai, W.T.: Shear-thickening polishing method. Int. J. Mach. Tool Manuf. 94, 88–99 (2015)CrossRef
51.
Zurück zum Zitat Nejat, A., Jalali, A., Sharbatdar, M.: The flow of Newtonian and power law fluids in elastic tubes. J. Non-Newton. Fluid Mech. 166, 1158–1172 (2011)MATHCrossRef Nejat, A., Jalali, A., Sharbatdar, M.: The flow of Newtonian and power law fluids in elastic tubes. J. Non-Newton. Fluid Mech. 166, 1158–1172 (2011)MATHCrossRef
Metadaten
Titel
Simulation and Optimization Study on Polishing of Spherical Steel by Non-newtonian Fluids
verfasst von
Duc-Nam Nguyen
Ngoc Thoai Tran
Thanh-Phong Dao
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-04301-7_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.