Skip to main content

2005 | Buch

Simulation Approaches in Transportation Analysis

Recent Advances and Challenges

insite
SUCHEN

Über dieses Buch

Simulation Approaches in Transportation Analysis: Recent Advances and Challenges presents the latest developments in transport simulation, including dynamic network simulation and micro-simulation of people’s movement in an urban area. It offers a collection of the major simulation models that are now in use throughout the world; it illustrates each model in detail, examines potential problems, and points to directions for future development. The reader will be able to understand the functioning, applicability, and usefulness of advanced transport simulation models. The material in this book will be of wide use to graduate students and practitioners as well as researchers in the transportation engineering and planning fields.

Inhaltsverzeichnis

Frontmatter

Simulation Models and Their Application: State of the Art

Application of a Simulation-Based Dynamic Traffic Assignment Model
Abstract
The evaluation of on-line intelligent transportation system (ITS) measures, such as adaptive route-guidance and traffic management systems, depends heavily on the use of faster than real time traffic simulation models. Off-line applications, such as the testing of ITS strategies and planning studies, are also best served by fast-running traffic models due to the repetitive or iterative nature of such investigations. This paper describes a simulation-based, iterative dynamic-equilibrium traffic assignment model. The determination of time-dependent path flows is modeled as a master problem that is solved using the method of successive averages (MSA). The determination of path travel times for a given set of path flows is the network-loading sub-problem, which is solved using the space-time queuing approach of Mahut. This loading method has been shown to provide reasonably accurate results with very little computational effort. The model was applied to the Stockholm road network, which consists of 2100 links, 1,191 nodes, 228 zones, representing and 4,964 turns. The results show that this model is applicable to medium-size networks with a very reasonable computation time.
Michael Florian, Michael Mahut, Nicolas Tremblay
The DRACULA Dynamic Network Microsimulation Model
Abstract
Recent years have seen a tremendous interest world wide in the use of microsimulation techniques to model traffic in congested road networks. This interest is particularly associated with the development of real-time, high-tech based traffic management and control strategies that react to the highly dynamic and variable nature of traffic conditions and driver behaviour. This paper introduces the DRACULA dynamic traffic network model, with the main focus on its traffic microsimulation component. The paper describes the model’s theoretical and behavioural foundations, and presents illustrative examples of applying the model in the evaluation of real-time management strategies. Our experience shows that this is a particularly suitable framework for the realistic modelling of real-time technological strategies.
Ronghui Liu
Dynamic Network Simulation with AIMSUN
Abstract
The deployment of ITS must be assisted by suitable tools to conduct the feasibility studies required for testing the designs and evaluating the expected impacts. Microscopic traffic simulation has proven to be the suitable methodological approach to achieve these goals. This paper discuses some of the most critical aspects of the dynamic simulation of road networks, namely the heuristic dynamic assignment, the implied route choice models, and the validation methodology, a key issue to determine the degree of validity and significance of the simulation results. The paper is structured in two parts, the first provides an overview on how the main features of microscopic simulation have been implemented in AIMSUN, and the second is devoted to discus in detail the heuristic dynamic assignment.
Jaime Barceló, Jordi Casas
Microscopic Traffic Simulation: Models and Application
Abstract
Microscopic traffic simulation is an important tool for traffic analysis, particularly in the presence of intelligent transportation systems (ITS). In this paper we describe the main components of a microscopic traffic simulation model and illustrate the discussion with examples drawn from our experience with a microscopic traffic simulation tool, MITSIMLab. With respect to the use of simulation models in practical applications we discuss issues related to their calibration and validation. We demonstrate this part with a case study of applying MITSIMLab in Stockholm, Sweden.
Tomer Toledo, Haris Koutsopoulos, Moshe Ben-Akiva, Mithilesh Jha

Applications of Transport Simulation

The Art of the Utilization of Traffic Simulation Models: How Do We Make Them Reliable Tools?
Abstract
This paper, firstly, describes the current status of the utilization of traffic simulation models. Evaluation for the model’s application in Japan was based on a questionnaire survey. Secondly, the Best Practice Manual for Simulation Application, which is currently being developed, is discussed. In addition some exerts from the manual in regards to addressing the issues of simulation application are presented: i.e. i) understanding the models’ nature through verification and validation; ii) OD estimation from vehicle counts; iii) model parameter calibration; and iv) indices to measure the reproducibility. Finally this paper introduces the Clearing House of Traffic Simulation Models. These models promote simulation utilization.
Ryota Horiguchi, Masao Kuwahara
Absorbing Markov Process OD Estimation and a Transportation Network Simulation Model
Abstract
Most studies of traffic network simulations aim to calculate travel times or traffic volumes as accurately as possible using origin-destination (OD) traffic volumes (i.e., an OD matrix). In general, estimating OD volumes is very difficult, and the performance of the simulation largely depends on OD estimation. This study proposes a transportation network simulation model that makes use of OD estimation. This simulation model estimates OD volumes using the absorbing Markov process, which can easily estimate OD volumes using only traffic counts at intersections, and which simulates the transportation network dynamically. This enables us to simulate the network states more closely to actual traffic counts.
Junichi Takayama, Shoichiro Nakayama
Simulating Travel Behaviour using Location Positioning Data Collected with A Mobile Phone System
Abstract
Mobile communication technology has recently become applicable in tracking surveys of individual travel behaviour in urban space. This is due to an increase in capacity to collect more precise time and location data of moving objects. This paper presents a study of a tracking survey system, which uses the location positioning function of a PHS (Personal Handy phone System) to collect travel data from 96 spectators at a Sumo tournament held in Osaka. It is shown that the space-time distribution map of location positioning data is useful in understanding the concentration and dispersion of travel demand in a day. A simulation-based methodology is proposed which involves multiplying the 96 samples by thousands of spectators. A number of profiles of hypothetical spectators were generated using the probability distribution of the sampled spectators. Another simulation model was developed to estimate the movement of spectators at a match held at a different venue. The probability distributions of the original samples were also used to generate spectator’ profiles. These profiles were then put into a railway network simulator that described the movement of spectators and the quality of railway services in a congested situation. Case studies in the Osaka Nagai Stadium were examined to evaluate the congestion reduction policies at railway stations near the stadium. Along with guiding spectators to the less congested stations, sub-attractions in the stadium after the game were also found to be effective in reducing peak time congestion at popular stations.
Yasuo Asakura, Eiji Hato, Katsutoshi Sugino

Representing Traffic Dynamics

Simulation of the Autobahn Traffic in North Rhine-Westphalia
Abstract
The amount of vehicular traffic has reached the capacity of road networks in many densely populated regions world-wide. Especially in North Rhine-Westphalia, situated in the western part of Germany, growing traffic demand gives rise to more and more congestion on the autobahn network. Therefore, the need for intelligent information systems has become increasingly important. Here we present a combination of real time traffic data analysis and microscopic traffic simulations as the basis of an online-tool that provides full information of the traffic state on the complete autobahn network. Using a java applet the results are made topical minute by minute in the internet (www.autobahn.nrw.de).
Michael Schreckenberg, Andreas Pottmeier, Sigurður F. Hafstein, Roland Chrobok, Joachim Wahle
Data And Parking Simulation Models
Abstract
Discrete event parking simulation models aim to replicate travel and parking behaviour. Parking behaviour relies on driver behaviour and its interaction with the land-use, transport, vehicle and human systems. In order to understand the parking system it is necessary to understand how drivers, vehicles and the road environment interact. This system can never be fully understood nor modelled, however, as technology creates new methods of collecting and synthesising data and increases the power and speed of computer systems it is possible to increase the accuracy, reliability and applicability of simulation models. This paper outlines some of the present limitations in discrete event simulation models and data, and then explores the interaction between data collection, model accuracy and the validity of models. It highlights some of the recent developments in technology and indicates how these can be used to improve many aspects of travel and parking simulation models.
William Young, Tan Yan Weng
Saga of Traffic Simulation Models in Japan
Abstract
This paper narrates a history of developments in the traffic simulation models in Japan. Starting from 1971, basically two kinds of logic existed for reproducing dynamic traffic flow. These were the Block Density Method and the Input-Output Method. These methods were compared to the calculation engine of the network traffic simulation model. Subsequently, these methods evolved, were modified, and became more advanced as found in the AVENUE and SOUND simulation models. This development catered better to the changes in needs required by newer traffic simulation models and resulted in part from developments in computer technology. The first models do not include drivers’ route choice behaviour, but the later do. Initially these methods were applied to urban expressways; however, they later expanded to include surface street networks.
Hirokazu Akahane, Takashi Oguchi, Hiroyuki Oneyama
A Study on Feasibility of Integrating Probe Vehicle Data into A Traffic State Estimation Problem using Simulated Data
Abstract
Probe vehicle data has great potential for improving the estimation accuracy of traffic situations. The primary objective of this study is to present a systematic method of estimating traffic states on an expressway by combining probe vehicle data with conventional fixed detector data, using a Kalman filter technique. This paper discusses the parameter of identification of simulation models used prior to the introduction of the new method. Then, the method to estimate traffic states using integrated data from probe vehicles and detectors is described. Experimental results showed that the estimation accuracy could be improved by the proposed method.
Chumchoke Nanthawichit, Takashi Nakatsuji, Hironori Suzuki

Representing User Behavior

Consistency of Traffic Simulation and Travel Behaviour Choice Theory
Abstract
In order to evaluate ITS options and dynamic TDM options, it has become important to understand how to integrate traffic simulations and dynamic travel behaviour choice models. Although Traffic simulation is well organised, visual and understandable, it looks weak in regards to representing user behaviour. From the standpoint of travel behaviour analysis, this paper points out the consistency problems and specific points in the integration of traffic simulation and dynamic route choice model or dynamic time-of-day choice model. It is recommended that fundamental concepts, such as choice set and user segmentation be incorporated appropriately into traffic simulations.
Noboru Harata
Driver’s Route Choice Behavior and its Implications on Network Simulation and Traffic Assignment
Abstract
The principle of driver’s route choice has long been the shortest path with a fixed time penalty of a toll. It is also understood that traffic is assigned on the road network based on user equilibrium with perfect information assumption. This paper demonstrates two empirical studies that pose questions to these traditional assumptions, to better understand route choice behavior. Multi-class user equilibrium assignment with imperfectly informed drivers’ classes is applied to a metropolitan area network first. Next, route choice behavior is directly observed and analyzed using probe’ car data.
Takayuki Morikawa, Tomio Miwa, Shinya Kurauchi, Toshiyuki Yamamoto, Kei Kobayashi
An Overview of PCATS/DEBNetS Micro-simulation System: Its Development, Extension, and Application to Demand Forecasting
Abstract
The micro-simulator of individuals’ daily travel, PCATS, and a dynamic network simulator, DEBNetS, are integrated to form a simulation system for urban passenger travel. The components of the simulation system are briefly described, and three areas of on-going system improvement are described, i.e., (i) introduction of stochastic frontier models of prism vertex location, (ii) adoption of a fine grid system for quasi-continuous representation of space, and (iii) use of MCMC algorithms to handle colossal choice sets. Application case studies demonstrate that micro-simulation is a practical approach for demand forecasting and policy analysis, especially in the area of demand management.
Ryuichi Kitamura, Akira Kikuchi, Satoshi Fujii, Toshiyuki Yamamoto
Metadaten
Titel
Simulation Approaches in Transportation Analysis
herausgegeben von
Ryuichi Kitamura
Maso Kuwahara
Copyright-Jahr
2005
Verlag
Springer US
Electronic ISBN
978-0-387-24109-8
Print ISBN
978-0-387-24108-1
DOI
https://doi.org/10.1007/b104513