Skip to main content

2021 | OriginalPaper | Buchkapitel

35. Simulation-Free Reduction Basis Interpolation to Reduce Parametrized Dynamic Models of Geometrically Non-linear Structures

verfasst von : Christian H. Meyer, Daniel J. Rixen

Erschienen in: Nonlinear Structures & Systems, Volume 1

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Virtual design studies for the dynamics of structures that undergo large deformations, such as wind turbine blades or Micro-Electro-Mechanical Systems (MEMS), can be a tedious task. Such studies are usually done with finite element simulations. The equations of motion that result from the finite element discretization typically are high-dimensional and nonlinear. This leads to high computation costs because the high-dimensional nonlinear stiffness term and its Jacobian must be evaluated at each Newton-Raphson iteration during time integration. Model reduction can overcome this burden by reducing the high-dimensional model to a smaller problem. This is done in two steps: First, a Galerkin projection on a reduction basis, and, second, hyperreduction of the geometric nonlinear restoring force term.
The first step, namely finding a proper reduction basis, can be performed by either simulation-based or simulation-free methods. While simulation-based methods, such as the Proper Orthogonal Decomposition (POD), rely on costly preliminary simulations of full high-dimensional models, simulation-free methods are much cheaper in computation. For this reason, simulation-free methods are more desirable for design studies where the amount of the so called ‘offline costs’ for reduction of the high-dimensional model are of high interest. However, simulation-free reduction bases are dependent on the system’s properties, and thus depend on design parameters that typically change for each design iteration. This dependence must be taken into account if the parameter space of interest is large.
This contribution shows how design iterations can be performed without the need for expensive simulations of the high-dimensional model. We propose to sample the parameter space, compute simulation-free reduction bases at the sample points and interpolate the bases at new parameter points. As hyperreduction technique, the Energy Conserving Sampling and Weighting method and the Polynomial expansion are used for hyperreduction of the nonlinear term. In this step, we also avoid simulations of the high-dimensional nonlinear model. The coefficients of the hyperreduction are updated in each design iteration for the new reduction bases.
A simple case study of a shape parameterized beam shows the performance of the proposed method. The case study also accounts for a last challenge that occurs in models that are parametric in shape: The topology of the finite element mesh must be maintained during the design iterations. We face this challenge by using mesh morphing techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Collier, W., Milian Sanz, J.: Comparison of linear and non-linear blade model predictions in Bladed to measurement data from GE 6MW wind turbine. J. Phys. Conf. Ser. 753(8), 082004 (2016)CrossRef Collier, W., Milian Sanz, J.: Comparison of linear and non-linear blade model predictions in Bladed to measurement data from GE 6MW wind turbine. J. Phys. Conf. Ser. 753(8), 082004 (2016)CrossRef
2.
Zurück zum Zitat Rezaei, M., Behzad, M., Haddadpour, H., Moradi, H.: Aeroelastic analysis of a rotating wind turbine blade using a geometrically exact formulation. Nonlinear Dyn. 89(4), 2367–2392 (2017)MathSciNetCrossRef Rezaei, M., Behzad, M., Haddadpour, H., Moradi, H.: Aeroelastic analysis of a rotating wind turbine blade using a geometrically exact formulation. Nonlinear Dyn. 89(4), 2367–2392 (2017)MathSciNetCrossRef
3.
Zurück zum Zitat Zhao, J., Chen, H.: A study on the coupled dynamic characteristics for a torsional micromirror. Microsyst. Technol. 11(12), 1301–1309 (2005)CrossRef Zhao, J., Chen, H.: A study on the coupled dynamic characteristics for a torsional micromirror. Microsyst. Technol. 11(12), 1301–1309 (2005)CrossRef
4.
Zurück zum Zitat Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)CrossRef Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)CrossRef
5.
Zurück zum Zitat Slaats, P., de Jongh, J., Sauren, A.: Model reduction tools for nonlinear structural dynamics. Comput. Struct. 54(6), 1155–1171 (1995)CrossRef Slaats, P., de Jongh, J., Sauren, A.: Model reduction tools for nonlinear structural dynamics. Comput. Struct. 54(6), 1155–1171 (1995)CrossRef
6.
Zurück zum Zitat Tiso, P.: Optimal second order reduction basis selection for nonlinear transient analysis. Conf. Proc. Soc. Exp. Mech. Ser. 3, 27–39 (2011)CrossRef Tiso, P.: Optimal second order reduction basis selection for nonlinear transient analysis. Conf. Proc. Soc. Exp. Mech. Ser. 3, 27–39 (2011)CrossRef
7.
Zurück zum Zitat Edelman, A., Arias, T., Smith, S.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)MathSciNetCrossRef Edelman, A., Arias, T., Smith, S.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)MathSciNetCrossRef
8.
Zurück zum Zitat Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)CrossRef Amsallem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)CrossRef
9.
Zurück zum Zitat Perez, R., Wang, X., Mignolet, M.: Nonintrusive structural dynamic reduced order modeling for large deformations: enhancements for complex structures. J. Comput. Nonlinear Dyn. 9(3), 031008-1–031008-12 (2014). https://doi.org/10.1115/1.4026155 Perez, R., Wang, X., Mignolet, M.: Nonintrusive structural dynamic reduced order modeling for large deformations: enhancements for complex structures. J. Comput. Nonlinear Dyn. 9(3), 031008-1–031008-12 (2014). https://​doi.​org/​10.​1115/​1.​4026155
10.
Zurück zum Zitat Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int. J. Numer. Methods Eng. 98(9), 625–662 (2014)MathSciNetCrossRef Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int. J. Numer. Methods Eng. 98(9), 625–662 (2014)MathSciNetCrossRef
11.
Zurück zum Zitat Rutzmoser, J.: Model order reduction for nonlinear structural dynamics. Dissertation, Technische Universität München, München (2018) Rutzmoser, J.: Model order reduction for nonlinear structural dynamics. Dissertation, Technische Universität München, München (2018)
12.
Zurück zum Zitat Rutzmoser, J., Rixen, D.: A lean and efficient snapshot generation technique for the hyper-reduction of nonlinear structural dynamics. Comput. Methods Appl. Mech. Eng. 325, 330–349 (2017)MathSciNetCrossRef Rutzmoser, J., Rixen, D.: A lean and efficient snapshot generation technique for the hyper-reduction of nonlinear structural dynamics. Comput. Methods Appl. Mech. Eng. 325, 330–349 (2017)MathSciNetCrossRef
Metadaten
Titel
Simulation-Free Reduction Basis Interpolation to Reduce Parametrized Dynamic Models of Geometrically Non-linear Structures
verfasst von
Christian H. Meyer
Daniel J. Rixen
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-47626-7_35