Skip to main content
Erschienen in: Metallurgist 11-12/2020

16.03.2020

Simulation of the Aluminum Electrolysis Process in a High-Current Electrolytic Cell in Modern Software

verfasst von: A. D. Smol’nikov, Yu. V. Sharikov

Erschienen in: Metallurgist | Ausgabe 11-12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A three-dimensional nonstationary model of a 600 kA electrolytic cell is described. The mathematical model describes the electrolysis processes occurring in the cell. The assumptions underlying the model are justified. The dependence of the process on raw materials is shown and taken into account in the model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. N. Smirnov, A. V. Popov, and V. V. Evseev, “Developing a technology of baking RA-300 electrolytic cells,” in: RUSAL Engineering and Economic Bulletin [in Russian], Krasnoyarsk (2006), pp. 24–27. V. N. Smirnov, A. V. Popov, and V. V. Evseev, “Developing a technology of baking RA-300 electrolytic cells,” in: RUSAL Engineering and Economic Bulletin [in Russian], Krasnoyarsk (2006), pp. 24–27.
2.
Zurück zum Zitat S. G. Shakrai, P. V. Polyakov, G. V. Arkhipov, E. R. Shaidulin, and A. V. Sman’, “Anode mass cover as an aluminum electrolyzer subsystem,” Metallurgist,58, No. 11-12, 1128–1135 (2015). S. G. Shakrai, P. V. Polyakov, G. V. Arkhipov, E. R. Shaidulin, and A. V. Sman’, “Anode mass cover as an aluminum electrolyzer subsystem,” Metallurgist,58, No. 11-12, 1128–1135 (2015).
3.
Zurück zum Zitat A. D. Smol’nikov, V. Yu. Bazhin, and P. A. Petrov, “Elektroliz 600+ concept of power-effective aluminum production,” in: Intern. Research J., No. 5 (47), Part 3, Ekaterinburg (2016), pp. 37–40. A. D. Smol’nikov, V. Yu. Bazhin, and P. A. Petrov, “Elektroliz 600+ concept of power-effective aluminum production,” in: Intern. Research J., No. 5 (47), Part 3, Ekaterinburg (2016), pp. 37–40.
4.
Zurück zum Zitat V. Bojarevics and K. Pericleous, “Solutions for the metal–bath interface in aluminium electrolysis cells,” Light Metals, 569–574 (2009). V. Bojarevics and K. Pericleous, “Solutions for the metal–bath interface in aluminium electrolysis cells,” Light Metals, 569–574 (2009).
5.
Zurück zum Zitat Lu Dingxiong, Mao Jihong, Ban Yungang, and Qi. Xiquan, “Development of NEUI500k. A family high energy efficiency aluminum reduction pot (“HEEP”) technology,” Light Metals, 455–460 (2011). Lu Dingxiong, Mao Jihong, Ban Yungang, and Qi. Xiquan, “Development of NEUI500k. A family high energy efficiency aluminum reduction pot (“HEEP”) technology,” Light Metals, 455–460 (2011).
6.
Zurück zum Zitat S. Lindsay and N. Dando, “Dry scrubbing for modern pre-bake cells,” Light Metals, 275–280 (2009). S. Lindsay and N. Dando, “Dry scrubbing for modern pre-bake cells,” Light Metals, 275–280 (2009).
7.
Zurück zum Zitat L. E. Kondrat’eva, Foundations of the Finite-Element Method (A Compendum of Lectures) [in Russian], Vladim. Gos. Univ., Vladimir (2007). L. E. Kondrat’eva, Foundations of the Finite-Element Method (A Compendum of Lectures) [in Russian], Vladim. Gos. Univ., Vladimir (2007).
8.
Zurück zum Zitat A. Ya. Karvatskii, G. N. Vasil’chenko, and V. V. Bil’ko, “Numerical simulation for calculating the energy balance of an aluminum electrolysis cell,” Promyshl. Teplotekhn.,30, No. 2, 33–40 (2008). A. Ya. Karvatskii, G. N. Vasil’chenko, and V. V. Bil’ko, “Numerical simulation for calculating the energy balance of an aluminum electrolysis cell,” Promyshl. Teplotekhn.,30, No. 2, 33–40 (2008).
9.
Zurück zum Zitat I. N. Korostelev, Mathematical Model of Stationary Physical Fields and MHD Stability Criterion in the Algorithms of a Dynamic Model of an Aluminum Electrolysis Cell [in Russian], PhD Thesis, 05.13.18, RGB, Moscow (2005). I. N. Korostelev, Mathematical Model of Stationary Physical Fields and MHD Stability Criterion in the Algorithms of a Dynamic Model of an Aluminum Electrolysis Cell [in Russian], PhD Thesis, 05.13.18, RGB, Moscow (2005).
10.
Zurück zum Zitat A. D. Smol’nikov and V. Yu. Sharikov, “Simulating the electrolysis of aluminum in a high-current electrolytic cell by the finiteelement method,” Vestn. Sovr. Issled. (ISSN 2541-8300), No. 6-1 (21), 551–553 (2018). A. D. Smol’nikov and V. Yu. Sharikov, “Simulating the electrolysis of aluminum in a high-current electrolytic cell by the finiteelement method,” Vestn. Sovr. Issled. (ISSN 2541-8300), No. 6-1 (21), 551–553 (2018).
11.
Zurück zum Zitat A. B. Mazo, Foundations of the Heat-Transfer Theory and Methods [in Russian], Kazan. Univ., Kazan (2013). A. B. Mazo, Foundations of the Heat-Transfer Theory and Methods [in Russian], Kazan. Univ., Kazan (2013).
12.
Zurück zum Zitat I. V. Sharikov and F. I. Sharikov, “Control systems using mathematical models of technological objects in the control loop,” J. Fundam. Appl. Sci., No. 9 (7S), 815–833 (2017). I. V. Sharikov and F. I. Sharikov, “Control systems using mathematical models of technological objects in the control loop,” J. Fundam. Appl. Sci., No. 9 (7S), 815–833 (2017).
13.
Zurück zum Zitat Y. V. Sharikov and A. A. Markus, “Mathematical modeling of thermal fields in a fragment of the lining of a rotary kiln,” Metallurgist,57, No. 11-12, 1062–1066 (2014). Y. V. Sharikov and A. A. Markus, “Mathematical modeling of thermal fields in a fragment of the lining of a rotary kiln,” Metallurgist,57, No. 11-12, 1062–1066 (2014).
14.
Zurück zum Zitat P. A. Petrov, Y. V. Sharikov, A. A. Vlasov, V. Y. Bazhin, and A. Y. Feoktistov, “Developing software for the feed-control systems of high-power aluminum reduction cells,” Metallurgist,58, No. 11–12, 1060–1063 (2015). P. A. Petrov, Y. V. Sharikov, A. A. Vlasov, V. Y. Bazhin, and A. Y. Feoktistov, “Developing software for the feed-control systems of high-power aluminum reduction cells,” Metallurgist,58, No. 11–12, 1060–1063 (2015).
Metadaten
Titel
Simulation of the Aluminum Electrolysis Process in a High-Current Electrolytic Cell in Modern Software
verfasst von
A. D. Smol’nikov
Yu. V. Sharikov
Publikationsdatum
16.03.2020
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 11-12/2020
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-020-00953-6

Weitere Artikel der Ausgabe 11-12/2020

Metallurgist 11-12/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.