Skip to main content
Erschienen in: Fluid Dynamics 5/2020

01.09.2020

Simultaneous Effect of Droplet Temperature and Surface Wettability on Single Drop Impact Dynamics

verfasst von: P. T. Naveen, R. R. Simhadri, S. K. Ranjith

Erschienen in: Fluid Dynamics | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the influence of the liquid droplet temperature on thermo–hydrodynamics of a single droplet impinging on surfaces having different hydrophobicities is experimentally investigated. Variation in the liquid temperature typically results in alteration of properties such as the density, the viscosity, the surface tension, and the enthalpy, consequently, the droplet dynamics gets to be modified. Employing high-speed imaging technique, the morphology and spreading pattern are investigated for water droplet collision on hydrophilic, hydrophobic and super-hydrophobic surfaces. The droplet deformation is monitored qualitatively and quantitatively for drops in the temperature range from 5 to 85°C and the Weber number between 14.5 and 160. It is observed that with an increase in the liquid temperature the spreading factor increases owing to the combined effect of reduction in the density, the surface tension, the viscosity and the contact angle of the solid surface. The differences in extension of droplets under the extreme temperatures for hydrophilic, hydrophobic and super-hydrophobic surfaces are noted to be 62.7, 27.76, and 20.52%, respectively. At the low temperature, the surface tension force dominates and the Cassie–Baxter state prevails on a textured super-hydrophobic surface and the droplets bounce off. In contrast at elevated temperatures, the liquid–solid interface ruptures and liquid penetrates into the cavities and results in the Wenzel state. Furthermore, the drop which exhibits multiple bounces in the low temperature regime is found sticking on a super-hydrophobic substrate at the high droplet temperature irrespective of the Weber number.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Moreira, A., Moita, A., and Panao, M., Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?, Progress in Energy and Combustion Science, 2010, vol. 36, no. 5, pp. 554–580. Moreira, A., Moita, A., and Panao, M., Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?, Progress in Energy and Combustion Science, 2010, vol. 36, no. 5, pp. 554–580.
2.
Zurück zum Zitat Rein, M., Drop–Surface Interactions, Springer, 2014, vol. 456.MATH Rein, M., Drop–Surface Interactions, Springer, 2014, vol. 456.MATH
3.
Zurück zum Zitat Gilet, T. and Bourouiba, L., Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization, Integrative and Comparative Biology, 2014, vol. 54, no. 6, pp. 974–984. Gilet, T. and Bourouiba, L., Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization, Integrative and Comparative Biology, 2014, vol. 54, no. 6, pp. 974–984.
4.
Zurück zum Zitat Bartolo, D., Bouamrirene, F., Verneuil, E., Buguin, A., Silberzan, P., and Moulinet, S., Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhysics Letters, 2006, vol. 74, no. 2, p. 299.ADS Bartolo, D., Bouamrirene, F., Verneuil, E., Buguin, A., Silberzan, P., and Moulinet, S., Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhysics Letters, 2006, vol. 74, no. 2, p. 299.ADS
5.
Zurück zum Zitat Gradeck, M., Seiler, N., Ruyer, P., and Maillet, D., Heat transfer for leidenfrost drops bouncing onto a hot surface, Experimental Thermal and Fluid Science, 2013, Vol. 47, pp. 14–25. Gradeck, M., Seiler, N., Ruyer, P., and Maillet, D., Heat transfer for leidenfrost drops bouncing onto a hot surface, Experimental Thermal and Fluid Science, 2013, Vol. 47, pp. 14–25.
6.
Zurück zum Zitat Gulyaev, I. and Solonenko, O., Hollow droplets impacting onto a solid surface, Experiments in Fluids, 2013, vol. 54, no. 1, p. 1432.ADS Gulyaev, I. and Solonenko, O., Hollow droplets impacting onto a solid surface, Experiments in Fluids, 2013, vol. 54, no. 1, p. 1432.ADS
7.
Zurück zum Zitat Cheung, F. and Bajorek, S., Dynamics of droplet breakup through a grid spacer in a rod bundle, Nuclear Engineering and Design, 2011, vol. 241, no. 1, pp. 236–244. Cheung, F. and Bajorek, S., Dynamics of droplet breakup through a grid spacer in a rod bundle, Nuclear Engineering and Design, 2011, vol. 241, no. 1, pp. 236–244.
8.
Zurück zum Zitat Patil, N. D., Bhardwaj, R., and Sharma, A., Droplet impact dynamics on micro pillared hydrophobic surfaces, Experimental Thermal and Fluid Science, 2016, vol. 74, pp. 195–206. Patil, N. D., Bhardwaj, R., and Sharma, A., Droplet impact dynamics on micro pillared hydrophobic surfaces, Experimental Thermal and Fluid Science, 2016, vol. 74, pp. 195–206.
9.
Zurück zum Zitat Yarin, A., Drop impact dynamics: splashing, spreading, receding, bouncing, Annual Review of Fluid Mechanics, 2006, vol. 38, pp. 159–192.ADSMathSciNetMATH Yarin, A., Drop impact dynamics: splashing, spreading, receding, bouncing, Annual Review of Fluid Mechanics, 2006, vol. 38, pp. 159–192.ADSMathSciNetMATH
10.
Zurück zum Zitat Josserand, C. and Thoroddsen, S., Drop impact on a solid surface, Annual Review of Fluid Mechanics, 2016, vol. 48, pp. 365–391.ADSMathSciNetMATH Josserand, C. and Thoroddsen, S., Drop impact on a solid surface, Annual Review of Fluid Mechanics, 2016, vol. 48, pp. 365–391.ADSMathSciNetMATH
11.
Zurück zum Zitat Marengo, M., Antonini, C., Roisman, I. V., and Tropea, C., Drop collisions with simple and complex surfaces, Current Opinion in Colloids & Interface Science, 2011, vol. 16, no. 4, pp. 292–302. Marengo, M., Antonini, C., Roisman, I. V., and Tropea, C., Drop collisions with simple and complex surfaces, Current Opinion in Colloids & Interface Science, 2011, vol. 16, no. 4, pp. 292–302.
12.
Zurück zum Zitat Mitrakusuma, W. H., Kamal, S., and Susila, M. D., The dynamics of the water droplet impacting onto hot solid surfaces at medium weber numbers, Heat and Mass Transfer, 2017, vol. 53, no. 10, pp. 3085–3097.ADS Mitrakusuma, W. H., Kamal, S., and Susila, M. D., The dynamics of the water droplet impacting onto hot solid surfaces at medium weber numbers, Heat and Mass Transfer, 2017, vol. 53, no. 10, pp. 3085–3097.ADS
13.
Zurück zum Zitat Makarikhin, I. Y., Makarov, S. O., and Rybkin, K. A., On the fall of a droplet onto the free surface of another fluid, Fluid Dynamics, 2010, vol. 45, no. 1, pp. 34–38.ADS Makarikhin, I. Y., Makarov, S. O., and Rybkin, K. A., On the fall of a droplet onto the free surface of another fluid, Fluid Dynamics, 2010, vol. 45, no. 1, pp. 34–38.ADS
14.
Zurück zum Zitat Tran, T., Staat, H. J., Susarrey-Arce, A., Foertsch, T. C., van Houselt, A., Gardeniers, H. J., Prosperetti, A., Lohse, D., and Sun, C., Droplet impact on superheated micro–structured surfaces, Soft Matter, 2013, vol. 9, no. 12, pp. 3272–3282.ADS Tran, T., Staat, H. J., Susarrey-Arce, A., Foertsch, T. C., van Houselt, A., Gardeniers, H. J., Prosperetti, A., Lohse, D., and Sun, C., Droplet impact on superheated micro–structured surfaces, Soft Matter, 2013, vol. 9, no. 12, pp. 3272–3282.ADS
15.
Zurück zum Zitat Mitra, S., Sathe, M. J., Doroodchi, E., Utikar, R., Shah, M. K., Pareek, V., Joshi, J.B., and Evans, G. M., Droplet impact dynamics on a spherical particle, Chemical Engineering Science, 2013, vol. 100, pp.105–119. Mitra, S., Sathe, M. J., Doroodchi, E., Utikar, R., Shah, M. K., Pareek, V., Joshi, J.B., and Evans, G. M., Droplet impact dynamics on a spherical particle, Chemical Engineering Science, 2013, vol. 100, pp.105–119.
16.
Zurück zum Zitat Okawa, T., Shiraishi, T., and Mori, T., Production of secondary drops during the single water drop impact onto a plane water surface, Experiments in Fluids, 2006, vol. 41, no. 6, p. 965.ADS Okawa, T., Shiraishi, T., and Mori, T., Production of secondary drops during the single water drop impact onto a plane water surface, Experiments in Fluids, 2006, vol. 41, no. 6, p. 965.ADS
17.
Zurück zum Zitat Quere, D. and Mathilde, C., On water repellency, Soft Matter, 2005, vol. 1, pp. 55–61.ADS Quere, D. and Mathilde, C., On water repellency, Soft Matter, 2005, vol. 1, pp. 55–61.ADS
18.
Zurück zum Zitat Direktor, L. B., and Maikov, I. L., Numerical modeling of the dynamics of a viscous–fluid droplet, Fluid Dynamics, 2009, vol. 44, no. 5, p. 715.ADSMathSciNetMATH Direktor, L. B., and Maikov, I. L., Numerical modeling of the dynamics of a viscous–fluid droplet, Fluid Dynamics, 2009, vol. 44, no. 5, p. 715.ADSMathSciNetMATH
19.
Zurück zum Zitat Bhushan, B. and Jung, Y.C., Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Progress in Materials Science, 2011, vol. 56 no.1, pp. 1–108. Bhushan, B. and Jung, Y.C., Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Progress in Materials Science, 2011, vol. 56 no.1, pp. 1–108.
20.
Zurück zum Zitat Gilet, T. and Bush, J. W. M., Droplets bouncing on a wet, inclined surface, Physics of Fluid, 2012, vol. 24, no. 12. Gilet, T. and Bush, J. W. M., Droplets bouncing on a wet, inclined surface, Physics of Fluid, 2012, vol. 24, no. 12.
21.
22.
Zurück zum Zitat Jin, Z., Wang, Z., Sui, D., and Yang, Z., The impact and freezing processes of a water droplet on different inclined cold surfaces, International Journal of Heat and Mass Transfer, 2016, vol. 97, pp. 211–223. Jin, Z., Wang, Z., Sui, D., and Yang, Z., The impact and freezing processes of a water droplet on different inclined cold surfaces, International Journal of Heat and Mass Transfer, 2016, vol. 97, pp. 211–223.
23.
Zurück zum Zitat Karlsson, L., Ljung, A. L., and Lundström, T. S., Modelling the dynamics of the flow within freezing water droplets, Heat and Mass Transfer, 2018, vol. 54, no. 12, pp. 1–9. Karlsson, L., Ljung, A. L., and Lundström, T. S., Modelling the dynamics of the flow within freezing water droplets, Heat and Mass Transfer, 2018, vol. 54, no. 12, pp. 1–9.
24.
Zurück zum Zitat Liu, Y., Andrew, M., Li, J., Yeomans, J. M., and Wang, Z., Symmetry breaking in drop bouncing on curved surfaces, Nature Communications, 2015, vol. 6. Liu, Y., Andrew, M., Li, J., Yeomans, J. M., and Wang, Z., Symmetry breaking in drop bouncing on curved surfaces, Nature Communications, 2015, vol. 6.
25.
Zurück zum Zitat Kline, S. J., and McClintock, F., Describing uncertainties in single-sample experiments, Mechanical Engineering, 1953, vol. 75, no. 1, pp. 3–8. Kline, S. J., and McClintock, F., Describing uncertainties in single-sample experiments, Mechanical Engineering, 1953, vol. 75, no. 1, pp. 3–8.
26.
Zurück zum Zitat Rajesh, R. S., Naveen, P. T., Krishnakumar, K., and Ranjith, S. K., Dynamics of single droplet impact on cylindrically–curved superheated surfaces, Experimental Thermal and Fluid Science, 2019, vol. 101, pp. 251–262. Rajesh, R. S., Naveen, P. T., Krishnakumar, K., and Ranjith, S. K., Dynamics of single droplet impact on cylindrically–curved superheated surfaces, Experimental Thermal and Fluid Science, 2019, vol. 101, pp. 251–262.
27.
Zurück zum Zitat Quintero, E. S., Riboux, G., and Gordillo, J. M., Splashing of droplets impacting superhydrophobic substrates, Journal of Fluid Mechanics, 2019, vol. 870, pp. 175–188.ADS Quintero, E. S., Riboux, G., and Gordillo, J. M., Splashing of droplets impacting superhydrophobic substrates, Journal of Fluid Mechanics, 2019, vol. 870, pp. 175–188.ADS
28.
Zurück zum Zitat Guo, C., Zhao, D., Sun, Y., Wang, M., and Liu, Y., Droplet impact on anisotropic superhydrophobic surfaces, Langmuir, 2018, vol. 34, no.11, pp. 3533–3540. Guo, C., Zhao, D., Sun, Y., Wang, M., and Liu, Y., Droplet impact on anisotropic superhydrophobic surfaces, Langmuir, 2018, vol. 34, no.11, pp. 3533–3540.
29.
Zurück zum Zitat Ma, J., Weisensee, P. B., Shin, Y. H., Chang, Y., Tian, J., King, W. P., and Miljkovic, N., Water droplet impact on vibrating rigid superhydrophobic surfaces, World Academy of Science, Engineering and Technology, International Journal of Aerospace and Mechanical Engineering, 2017, vol. 2, no. 10. Ma, J., Weisensee, P. B., Shin, Y. H., Chang, Y., Tian, J., King, W. P., and Miljkovic, N., Water droplet impact on vibrating rigid superhydrophobic surfaces, World Academy of Science, Engineering and Technology, International Journal of Aerospace and Mechanical Engineering, 2017, vol. 2, no. 10.
30.
Zurück zum Zitat Granick, S., Zhu, Y., and Lee, H., Slippery questions about complex fluids flowing past solids, Nature Materials, 2003, vol. 2, no. 4, pp. 221–227.ADS Granick, S., Zhu, Y., and Lee, H., Slippery questions about complex fluids flowing past solids, Nature Materials, 2003, vol. 2, no. 4, pp. 221–227.ADS
31.
Zurück zum Zitat Rothstein, J., Slip on superhydrophobic surfaces, Annual Review of Fluid Mechanics, 2010, vol. 42, pp. 89–109.ADS Rothstein, J., Slip on superhydrophobic surfaces, Annual Review of Fluid Mechanics, 2010, vol. 42, pp. 89–109.ADS
32.
Zurück zum Zitat Wang, M. J., Hung, Y. L., Lin, F. H., and Lin, S. Y., Dynamic behaviors of droplet impact and spreading: a universal relationship study of dimensionless wetting diameter and droplet height, Experimental Thermal and Fluid Science, 2009, vol. 33, no. 7, pp. 1112–1118. Wang, M. J., Hung, Y. L., Lin, F. H., and Lin, S. Y., Dynamic behaviors of droplet impact and spreading: a universal relationship study of dimensionless wetting diameter and droplet height, Experimental Thermal and Fluid Science, 2009, vol. 33, no. 7, pp. 1112–1118.
33.
Zurück zum Zitat Chae, J. Y. and Bharat, B., Dynamic effects of bouncing water droplets on superhydrophobic surfaces, Langmuir, 2008, vol. 24, no. 12, pp. 6262–6269. Chae, J. Y. and Bharat, B., Dynamic effects of bouncing water droplets on superhydrophobic surfaces, Langmuir, 2008, vol. 24, no. 12, pp. 6262–6269.
34.
Zurück zum Zitat Bird, J. C., Dhiman, R., Kwon, H. M., and Varanasi, K. K., Reducing the contact time of a bouncing drop, Nature, 2013, vol. 503, no. 7476, pp. 385–388.ADS Bird, J. C., Dhiman, R., Kwon, H. M., and Varanasi, K. K., Reducing the contact time of a bouncing drop, Nature, 2013, vol. 503, no. 7476, pp. 385–388.ADS
35.
Zurück zum Zitat Rioboo, R., Tropea, C., and Marengo, M., Time evolution of liquid drop impact onto solid, dry surfaces, Experiments in Fluids, 2001, vol. 33, pp. 112–124.ADS Rioboo, R., Tropea, C., and Marengo, M., Time evolution of liquid drop impact onto solid, dry surfaces, Experiments in Fluids, 2001, vol. 33, pp. 112–124.ADS
36.
Zurück zum Zitat Chandra, S. and Avedisian, C., On the collision of a droplet with a solid surface, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1991, vol. 432, pp. 13–41. Chandra, S. and Avedisian, C., On the collision of a droplet with a solid surface, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1991, vol. 432, pp. 13–41.
37.
Zurück zum Zitat Scheller, B. L. and Bousfield, D. W., Newtonian drop impact with a solid surface, AIChE J., 1995, vol. 41, no. 6, pp. 1357–1367. Scheller, B. L. and Bousfield, D. W., Newtonian drop impact with a solid surface, AIChE J., 1995, vol. 41, no. 6, pp. 1357–1367.
38.
Zurück zum Zitat Crick, C. R. and Parkin, I. P., Water droplet bouncinga definition for superhydrophobic Surfaces, Chemical Communications, 2011, vol. 47, no. 44, pp. 59–112. Crick, C. R. and Parkin, I. P., Water droplet bouncinga definition for superhydrophobic Surfaces, Chemical Communications, 2011, vol. 47, no. 44, pp. 59–112.
39.
Zurück zum Zitat Shiri, S. and Bird, J. C., Heat exchange between a bouncing drop and a superhydrophobic substrate, Proceedings of the Natural Academy of Science, United States of America, 2017. Shiri, S. and Bird, J. C., Heat exchange between a bouncing drop and a superhydrophobic substrate, Proceedings of the Natural Academy of Science, United States of America, 2017.
40.
Zurück zum Zitat Jiajun, J., Zhigang, Y., Xian, Y., and Zheyan, J., Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface, Physics of Fluids, 2019, vol. 31, no. 5, pp. 57–107. Jiajun, J., Zhigang, Y., Xian, Y., and Zheyan, J., Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface, Physics of Fluids, 2019, vol. 31, no. 5, pp. 57–107.
41.
Zurück zum Zitat Liu, Y., Chen, X., and Xin, J. H., Can superhydrophobic surfaces repel hot water?, Journal of Materials Chemistry 2009, vol. 19, pp. 5602–5611. Liu, Y., Chen, X., and Xin, J. H., Can superhydrophobic surfaces repel hot water?, Journal of Materials Chemistry 2009, vol. 19, pp. 5602–5611.
42.
Zurück zum Zitat Etienne, G., Jean-Pierre, H., Luc, P., and Catalin, D. M., Drop–surface interactions, Springer, 2014, vol. 456. Etienne, G., Jean-Pierre, H., Luc, P., and Catalin, D. M., Drop–surface interactions, Springer, 2014, vol. 456.
43.
Zurück zum Zitat Srinivasan, S., Praveen, V. K., Philip, R., and Ajayaghosh, A., Bioinspired superhydrophobic coatings of carbon nanotubes and linear π systems based on the bottom–up self-assembly approach, Angewandte Chemie, 2008, vol. 120, no. 31, pp. 5834–5838. Srinivasan, S., Praveen, V. K., Philip, R., and Ajayaghosh, A., Bioinspired superhydrophobic coatings of carbon nanotubes and linear π systems based on the bottom–up self-assembly approach, Angewandte Chemie, 2008, vol. 120, no. 31, pp. 5834–5838.
44.
Zurück zum Zitat Dash, S., Alt, M. T., and Garimella, S. V., Hybrid surface design for robust superhydrophobicity, Langmuir, 2012, vol. 28, no. 25, pp. 9606–9615. Dash, S., Alt, M. T., and Garimella, S. V., Hybrid surface design for robust superhydrophobicity, Langmuir, 2012, vol. 28, no. 25, pp. 9606–9615.
Metadaten
Titel
Simultaneous Effect of Droplet Temperature and Surface Wettability on Single Drop Impact Dynamics
verfasst von
P. T. Naveen
R. R. Simhadri
S. K. Ranjith
Publikationsdatum
01.09.2020
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 5/2020
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462820040084

Weitere Artikel der Ausgabe 5/2020

Fluid Dynamics 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.