Skip to main content
Erschienen in: Journal of Materials Science 18/2016

13.06.2016 | Original Paper

Simultaneously tough and conductive rubber–graphene–epoxy nanocomposites

verfasst von: Yong Jiun Lim, Declan Carolan, Ambrose C. Taylor

Erschienen in: Journal of Materials Science | Ausgabe 18/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work investigates the effect of adding graphene nanoplatelets (GNP) and either a phase-separating carboxyl-terminated butadiene acrylonitrile rubber (CTBN) or a polysiloxane core–shell rubber (CSR) to an anhydride-cured epoxy polymer. The effect of adding a reactive diluent to the resin was also investigated. The relationship between the microstructure and the resultant electrical and mechanical properties was investigated. The fracture energy of the unmodified epoxy polymer increased from 125 to 668 J/m2 with the addition of 9 wt% CTBN and 12.5 % reactive diluent. The subsequent addition of GNP to the rubber systems decreased the fracture energy. The epoxy nanocomposites modified with only GNP exhibited only a modest increase in measured fracture energy. The major toughening mechanisms in the rubber-modified formulations were observed to be shear band yielding and cavitation of the rubber particles followed by plastic void growth of the epoxy matrix. The electrical conductivity of the hybrid systems was also investigated. It was observed that the conductivity of the nanocomposites improved when 0.5 wt% of GNP was added although this improvement was lost in a CTBN–GNP system while the conductivity was further improved in the CSR–GNP system over the GNP only system with low-CSR particle loadings. It is demonstrated that this behaviour can be directly attributed to the microstructure of the nanocomposite. The results demonstrate that separation of nanomodified phases at the microscale can be used to develop simultaneously tough and conductive composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu S, Ladani RB, Zhang J, Kinloch AJ, Zhao Z, Ma J et al (2015) Epoxy nanocomposites containing magnetite-carbon nanofibers aligned using a weak magnetic field. Polymer 68(26):25–34CrossRef Wu S, Ladani RB, Zhang J, Kinloch AJ, Zhao Z, Ma J et al (2015) Epoxy nanocomposites containing magnetite-carbon nanofibers aligned using a weak magnetic field. Polymer 68(26):25–34CrossRef
2.
Zurück zum Zitat Poveda RL, Gupta N (2014) Electrical properties of carbon nanofiber reinforced multiscale polymer composites. Mater Des 56:416–422CrossRef Poveda RL, Gupta N (2014) Electrical properties of carbon nanofiber reinforced multiscale polymer composites. Mater Des 56:416–422CrossRef
3.
Zurück zum Zitat Ma H, Chen X, Hsiao BS, Chu B (2014) Improving toughness of ultra-high molecular weight polyethylene with ionic liquid modified carbon nanofiber. Polymer 55:160–165CrossRef Ma H, Chen X, Hsiao BS, Chu B (2014) Improving toughness of ultra-high molecular weight polyethylene with ionic liquid modified carbon nanofiber. Polymer 55:160–165CrossRef
4.
Zurück zum Zitat Bauhofer W, Kovac JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRef Bauhofer W, Kovac JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498CrossRef
5.
Zurück zum Zitat Ladani RJ, Wu S, Kinloch AJ, Ghorbani K, Zhang J, Mouritz AP, Wang CH (2016) Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon. Mater Des 94:554–564 Ladani RJ, Wu S, Kinloch AJ, Ghorbani K, Zhang J, Mouritz AP, Wang CH (2016) Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon. Mater Des 94:554–564
6.
Zurück zum Zitat Chandrasekharan S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polym J 49(12):3878–3888CrossRef Chandrasekharan S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polym J 49(12):3878–3888CrossRef
7.
Zurück zum Zitat Wu S, Ladani RB, Zhang J, Bafekrpour E, Ghorbani K, Mouritz AP et al (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618CrossRef Wu S, Ladani RB, Zhang J, Bafekrpour E, Ghorbani K, Mouritz AP et al (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618CrossRef
8.
Zurück zum Zitat Li J, Wong P-S, Kim J-K (2008) Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater Sci Eng A 483–484:660–663CrossRef Li J, Wong P-S, Kim J-K (2008) Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater Sci Eng A 483–484:660–663CrossRef
9.
Zurück zum Zitat Rowe EH, Siebert AR, Drake RS (1970) Toughening thermosets with liquid butadiene/acrylonitrile polymers. Mod Plast 47:110–117 Rowe EH, Siebert AR, Drake RS (1970) Toughening thermosets with liquid butadiene/acrylonitrile polymers. Mod Plast 47:110–117
10.
Zurück zum Zitat Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Deformation and fracture behaviour of a rubber toughened epoxy: 1. Microstructure Fract Studies Polym 24:1341–1354 Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Deformation and fracture behaviour of a rubber toughened epoxy: 1. Microstructure Fract Studies Polym 24:1341–1354
12.
Zurück zum Zitat Pearson RA, Yee AF (1991) Influence of particle size and particle size distribution on toughening mechanism in rubber-modified epoxies. J Mater Sci 26:3828–3844. doi:10.1007/BF01184979 CrossRef Pearson RA, Yee AF (1991) Influence of particle size and particle size distribution on toughening mechanism in rubber-modified epoxies. J Mater Sci 26:3828–3844. doi:10.​1007/​BF01184979 CrossRef
13.
Zurück zum Zitat Kinloch AJ, Mohammed R, Taylor AC, Eger C, Sprenger S, Egan D (2005) The effect of silica nano-particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 40:5083–5086. doi:10.1007/s10853-005-7261-1 CrossRef Kinloch AJ, Mohammed R, Taylor AC, Eger C, Sprenger S, Egan D (2005) The effect of silica nano-particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 40:5083–5086. doi:10.​1007/​s10853-005-7261-1 CrossRef
14.
Zurück zum Zitat Hsieh TH, Kinloch AJ, Masania K, Sohn Lee J, Taylor AC, Sprenger S (2010) The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45:1193–1210. doi:10.1007/s10853-009-4064-9 CrossRef Hsieh TH, Kinloch AJ, Masania K, Sohn Lee J, Taylor AC, Sprenger S (2010) The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45:1193–1210. doi:10.​1007/​s10853-009-4064-9 CrossRef
15.
Zurück zum Zitat Chen J, Kinloch AJ, Taylor AC, Sprenger S (2013) The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer 54:4276–4289CrossRef Chen J, Kinloch AJ, Taylor AC, Sprenger S (2013) The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer 54:4276–4289CrossRef
16.
Zurück zum Zitat Quan D, Ivankovic A (2015) Effect of core-shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 66:16–28CrossRef Quan D, Ivankovic A (2015) Effect of core-shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer. Polymer 66:16–28CrossRef
17.
Zurück zum Zitat Carolan D, Kinloch AJ, Ivankovic A, Sprenger S, Taylor AC (2016) Toughening of epoxy based polymers with hybrid nanoparticle systems. Polymer 97:179–190CrossRef Carolan D, Kinloch AJ, Ivankovic A, Sprenger S, Taylor AC (2016) Toughening of epoxy based polymers with hybrid nanoparticle systems. Polymer 97:179–190CrossRef
18.
Zurück zum Zitat Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890CrossRef Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890CrossRef
19.
Zurück zum Zitat Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183CrossRef Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183CrossRef
20.
Zurück zum Zitat Ahmadi-Moghadam B, Taheri F (2014) Fracture and toughening mechanism of GNP-based nanocomposites in mode I and II fracture. Eng Fract Mech 131:329–339CrossRef Ahmadi-Moghadam B, Taheri F (2014) Fracture and toughening mechanism of GNP-based nanocomposites in mode I and II fracture. Eng Fract Mech 131:329–339CrossRef
21.
Zurück zum Zitat Chandrakesaran S, Sato N, Tölle F, Müllhaupt R, Fiedler B, Schulte K (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97:90–99CrossRef Chandrakesaran S, Sato N, Tölle F, Müllhaupt R, Fiedler B, Schulte K (2014) Fracture toughness and failure mechanism of graphene based epoxy composites. Compos Sci Technol 97:90–99CrossRef
22.
Zurück zum Zitat Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1:30–49CrossRef Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1:30–49CrossRef
23.
Zurück zum Zitat Xie SH, Liu YY, Li JY (2008) Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl Phys Lett 92:243121-1–243121-3 Xie SH, Liu YY, Li JY (2008) Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl Phys Lett 92:243121-1–243121-3
24.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
25.
Zurück zum Zitat ISO-527-1 (1996) Plastics, Determination of tensile properties—part 2: test conditions for moulding and extrusion plastics. International Organization for Standardization, Geneva ISO-527-1 (1996) Plastics, Determination of tensile properties—part 2: test conditions for moulding and extrusion plastics. International Organization for Standardization, Geneva
26.
Zurück zum Zitat Williams JG, Ford H (1976) Stress-strain relationships for some unreinforced plastics. J Mech Eng Sci 16:344–352 Williams JG, Ford H (1976) Stress-strain relationships for some unreinforced plastics. J Mech Eng Sci 16:344–352
27.
Zurück zum Zitat ISO-13586 (2000) Plastics—determination of fracture toughness (GIC and KIC)—linear elastic fracture mechanics (LEFM) approach. International Organization for Standardization, Geneva ISO-13586 (2000) Plastics—determination of fracture toughness (GIC and KIC)—linear elastic fracture mechanics (LEFM) approach. International Organization for Standardization, Geneva
28.
Zurück zum Zitat Adams RD, Atkins RW, Harris JA, Kinloch AJ (1986) Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints. J Adhes 20(1):29–53CrossRef Adams RD, Atkins RW, Harris JA, Kinloch AJ (1986) Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints. J Adhes 20(1):29–53CrossRef
29.
Zurück zum Zitat Montserrat S, Málek J, Colomer P (1999) Thermal degradation kinetics of epoxy-anhydride resins: II. Influence of a reactive diluent. Thermochim Acta 336(1–2):65–71CrossRef Montserrat S, Málek J, Colomer P (1999) Thermal degradation kinetics of epoxy-anhydride resins: II. Influence of a reactive diluent. Thermochim Acta 336(1–2):65–71CrossRef
30.
Zurück zum Zitat Núnez-Regueira L, Villanueva M, Fraga-Rivas I (2006) Effect of a reactive diluent on the curing and dynamo-mechanical properties of an epoxy-diamine system. J Therm Anal Calorim 86:463–468CrossRef Núnez-Regueira L, Villanueva M, Fraga-Rivas I (2006) Effect of a reactive diluent on the curing and dynamo-mechanical properties of an epoxy-diamine system. J Therm Anal Calorim 86:463–468CrossRef
31.
Zurück zum Zitat Galpaya D, Wang M, George G, Motta N, Waclawik E, Yan C (2014) Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties. J Appl Phys 116:053518CrossRef Galpaya D, Wang M, George G, Motta N, Waclawik E, Yan C (2014) Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties. J Appl Phys 116:053518CrossRef
32.
Zurück zum Zitat Chong HM, Taylor AC (2014) The effect of graphene nanoplatelets on the fracture toughness of epoxy polymers. In: 37th annual meeting of the Adhesion Society, San Diego Chong HM, Taylor AC (2014) The effect of graphene nanoplatelets on the fracture toughness of epoxy polymers. In: 37th annual meeting of the Adhesion Society, San Diego
33.
Zurück zum Zitat Fox TG (1956) Influence of a diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1(3):123–135 Fox TG (1956) Influence of a diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1(3):123–135
34.
Zurück zum Zitat Andrews EH (1968) Fracture in polymers. Oliver & Boyd, Edinburgh Andrews EH (1968) Fracture in polymers. Oliver & Boyd, Edinburgh
35.
Zurück zum Zitat Faber KT, Evans AG (1983) Crack deflection processes-I. Theory. Acta Metall 31(4):565–576CrossRef Faber KT, Evans AG (1983) Crack deflection processes-I. Theory. Acta Metall 31(4):565–576CrossRef
36.
Zurück zum Zitat Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561CrossRef Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20(18):3557–3561CrossRef
37.
Zurück zum Zitat Jia J, Sun X, Lin X, Shen X, Mai Y-W (2014) J-.K. Kim, Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8(6):5774–5783CrossRef Jia J, Sun X, Lin X, Shen X, Mai Y-W (2014) J-.K. Kim, Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8(6):5774–5783CrossRef
38.
Zurück zum Zitat Lux F (1993) Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater Sci 28:285–301. doi:10.1007/BF00357799 CrossRef Lux F (1993) Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater Sci 28:285–301. doi:10.​1007/​BF00357799 CrossRef
Metadaten
Titel
Simultaneously tough and conductive rubber–graphene–epoxy nanocomposites
verfasst von
Yong Jiun Lim
Declan Carolan
Ambrose C. Taylor
Publikationsdatum
13.06.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0122-2

Weitere Artikel der Ausgabe 18/2016

Journal of Materials Science 18/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.