Skip to main content
Erschienen in: Foundations of Computational Mathematics 5/2013

01.10.2013

Single Basepoint Subdivision Schemes for Manifold-valued Data: Time-Symmetry Without Space-Symmetry

verfasst von: Tom Duchamp, Gang Xie, Thomas Yu

Erschienen in: Foundations of Computational Mathematics | Ausgabe 5/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper establishes smoothness results for a class of nonlinear subdivision schemes, known as the single basepoint manifold-valued subdivision schemes, which shows up in the construction of wavelet-like transform for manifold-valued data. This class includes the (single basepoint) Log–Exp subdivision scheme as a special case. In these schemes, the exponential map is replaced by a so-called retraction map f from the tangent bundle of a manifold to the manifold. It is known that any choice of retraction map yields a C 2 scheme, provided the underlying linear scheme is C 2 (this is called “C 2 equivalence”). But when the underlying linear scheme is C 3, Navayazdani and Yu have shown that to guarantee C 3 equivalence, a certain tensor P f associated to f must vanish. They also show that P f vanishes when the underlying manifold is a symmetric space and f is the exponential map. Their analysis is based on certain “C k  proximity conditions” which are known to be sufficient for C k  equivalence.
In the present paper, a geometric interpretation of the tensor P f is given. Associated to the retraction map f is a torsion-free affine connection, which in turn defines an exponential map. The condition P f =0 is shown to be equivalent to the condition that f agrees with the exponential map of the connection up to the third order. In particular, when f is the exponential map of a connection, one recovers the original connection and P f vanishes. It then follows that the condition P f =0 is satisfied by a wider class of manifolds than was previously known. Under the additional assumption that the subdivision rule satisfies a time-symmetry, it is shown that the vanishing of P f implies that the C 4 proximity conditions hold, thus guaranteeing C 4 equivalence. Finally, the analysis in the paper shows that for k≥5, the C k  proximity conditions imply vanishing curvature. This suggests that vanishing curvature of the connection associated to f is likely to be a necessary condition for C k equivalence for k≥5.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For S x to be well defined, adjacent points must be sufficiently close. We implicitly assume this condition throughout.
 
2
We do not assume here that the connection is the Levi-Civita connection of an underlying Riemannian metric. Consequently, these curves are not necessarily geodesics in the sense of Riemannian geometry.
 
3
In [31, Appendix] P f is shown to be independent of the choice of coordinates, and therefore a trilinear map of the tangent bundle of M. In differential geometry jargon, this is also called a tensor field of type (1,3) on M.
 
4
This is not to be confused with the order k condition in Definition 9.
 
5
For the smallest support C k subdivision scheme, namely the dyadic subdivision scheme coming from the degree k+1 B-spline, L is exactly k.
 
6
Recall that S and S lin always satisfy the order two proximity condition.
 
7
This lemma was overlooked in the order three proximity analysis in [31]. Notice that the zeros in the last column of [31, Table 1] correspond exactly to the cases where all J, \(J_{1}^{i}\), i=1,…,α are all empty.
 
8
We wish to thank one of the referees for suggesting this proof.
 
9
For the reference, the order four condition on a general manifold can be expressed in a general coordinate system as F 0,4 u 4F 2,2(u 2;u 2)−4F 1,2(u;u,F 0,2 u 2)−F 1,2(F 0,2 u 2;u 2)−2F 0,2(F 1,2(u;u 2),u)−2F 0,2(F 0,2(u 2)2)−4F 0,2(u,F 0,2(u,F 0,2(u 2)))=0, assuming that the order three condition \(P_{f}(u)=F_{0,2}(u, F_{0,2}(u,u) ) + \frac{1}{2} F_{1,2}(u; u,u) - \frac{1}{2} F_{0,3}(u,u,u)=0\) already holds.
 
10
For M=ℝ n or ℝ+, this kind of “linear subdivision schemes in disguise” are explored in [22].
 
Literatur
1.
Zurück zum Zitat R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd edn. Applied Mathematical Sciences, vol. 75 (Springer, New York, 1988). CrossRefMATH R. Abraham, J.E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd edn. Applied Mathematical Sciences, vol. 75 (Springer, New York, 1988). CrossRefMATH
2.
Zurück zum Zitat P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds (Princeton University Press, Princeton, 2008). MATH P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds (Princeton University Press, Princeton, 2008). MATH
3.
Zurück zum Zitat R.L. Adler, J.P. Dedieu, J.Y. Margulies, M. Martens, M. Shub, Newton’s method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal. 22(3), 359–390 (2002). MathSciNetCrossRefMATH R.L. Adler, J.P. Dedieu, J.Y. Margulies, M. Martens, M. Shub, Newton’s method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal. 22(3), 359–390 (2002). MathSciNetCrossRefMATH
5.
Zurück zum Zitat A.S. Cavaretta, W. Dahmen, C.A. Micchelli, Stationary Subdivision. Mem. Amer. Math. Soc., vol. 453 (American Math. Soc., Providence, 1991). A.S. Cavaretta, W. Dahmen, C.A. Micchelli, Stationary Subdivision. Mem. Amer. Math. Soc., vol. 453 (American Math. Soc., Providence, 1991).
6.
Zurück zum Zitat I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Series in Applied Mathematics, vol. 61 (SIAM, Philadelphia, 1992). CrossRefMATH I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Series in Applied Mathematics, vol. 61 (SIAM, Philadelphia, 1992). CrossRefMATH
7.
Zurück zum Zitat I. Daubechies, J. Lagarias, Two-scale difference equations II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23(4), 1031–1079 (1992). MathSciNetCrossRefMATH I. Daubechies, J. Lagarias, Two-scale difference equations II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23(4), 1031–1079 (1992). MathSciNetCrossRefMATH
8.
Zurück zum Zitat J.A. Dieudonné, J.B. Carrell, Invariant theory, old and new, Adv. Math. 4, 1–80 (1970). CrossRefMATH J.A. Dieudonné, J.B. Carrell, Invariant theory, old and new, Adv. Math. 4, 1–80 (1970). CrossRefMATH
10.
Zurück zum Zitat D.L. Donoho, Smooth wavelet decompositions with blocky coefficient kernels, in Recent Advances in Wavelet Analysis, ed. by L.L. Schumaker, G. Webb (Academic Press, Boston, 1993), pp. 259–308. D.L. Donoho, Smooth wavelet decompositions with blocky coefficient kernels, in Recent Advances in Wavelet Analysis, ed. by L.L. Schumaker, G. Webb (Academic Press, Boston, 1993), pp. 259–308.
11.
Zurück zum Zitat D.L. Donoho, Wavelet-type representation of lie-valued data. Talk at the IMI meeting on “Approximation and Computation”, Charleston, South Carolina, May 2001. D.L. Donoho, Wavelet-type representation of lie-valued data. Talk at the IMI meeting on “Approximation and Computation”, Charleston, South Carolina, May 2001.
12.
Zurück zum Zitat T. Duchamp, G. Xie, T.P.-Y. Yu, Smoothness equivalence breakdown, symmetry and accelerated-convergence in linear and nonlinear subdivision schemes. Manuscript (2012, in preparation). T. Duchamp, G. Xie, T.P.-Y. Yu, Smoothness equivalence breakdown, symmetry and accelerated-convergence in linear and nonlinear subdivision schemes. Manuscript (2012, in preparation).
13.
Zurück zum Zitat P. Grohs, Smoothness equivalence properties of univariate subdivision schemes and their projection analogues, Numer. Math. 113(2), 163–180 (2009). MathSciNetCrossRefMATH P. Grohs, Smoothness equivalence properties of univariate subdivision schemes and their projection analogues, Numer. Math. 113(2), 163–180 (2009). MathSciNetCrossRefMATH
14.
15.
16.
Zurück zum Zitat S. Kobayashi, K. Nomizu, Foundations of Differential Geometry. Wiley Classics Library, vol. I (Wiley, New York, 1996). Reprint of the 1963 original, A Wiley-Interscience Publication. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry. Wiley Classics Library, vol. I (Wiley, New York, 1996). Reprint of the 1963 original, A Wiley-Interscience Publication.
17.
Zurück zum Zitat O. Loos, Symmetric Spaces. I: General Theory (W. A. Benjamin, Inc., New York, 1969). MATH O. Loos, Symmetric Spaces. I: General Theory (W. A. Benjamin, Inc., New York, 1969). MATH
18.
Zurück zum Zitat Y. Meyer, Wavelets and Operators. Cambridge Studies in Advanced Mathematics, vol. 37 (Cambridge University Press, Cambridge, 1992). Translated from the 1990 French original by D.H. Salinger. MATH Y. Meyer, Wavelets and Operators. Cambridge Studies in Advanced Mathematics, vol. 37 (Cambridge University Press, Cambridge, 1992). Translated from the 1990 French original by D.H. Salinger. MATH
20.
Zurück zum Zitat I.Ur. Rahman, I. Drori, V.C. Stodden, D.L. Donoho, P. Schröder, Multiscale representations for manifold-valued data, Multiscale Model. Simul. 4(4), 1201–1232 (2005). MathSciNetCrossRefMATH I.Ur. Rahman, I. Drori, V.C. Stodden, D.L. Donoho, P. Schröder, Multiscale representations for manifold-valued data, Multiscale Model. Simul. 4(4), 1201–1232 (2005). MathSciNetCrossRefMATH
22.
Zurück zum Zitat S. Schaefer, E. Vouga, R. Goldman, Nonlinear subdivision through nonlinear averaging, Comput. Aided Geom. Des. 25(3), 162–180 (2008). MathSciNetCrossRefMATH S. Schaefer, E. Vouga, R. Goldman, Nonlinear subdivision through nonlinear averaging, Comput. Aided Geom. Des. 25(3), 162–180 (2008). MathSciNetCrossRefMATH
24.
Zurück zum Zitat J. Wallner, N. Dyn, Convergence and C 1 analysis of subdivision schemes on manifolds by proximity, Comput. Aided Geom. Des. 22(7), 593–622 (2005). MathSciNetCrossRefMATH J. Wallner, N. Dyn, Convergence and C 1 analysis of subdivision schemes on manifolds by proximity, Comput. Aided Geom. Des. 22(7), 593–622 (2005). MathSciNetCrossRefMATH
25.
Zurück zum Zitat G. Xie, T.P.-Y. Yu, Smoothness equivalence properties of interpolatory Lie group subdivision schemes, IMA J. Numer. Anal. 30(3), 731–750. G. Xie, T.P.-Y. Yu, Smoothness equivalence properties of interpolatory Lie group subdivision schemes, IMA J. Numer. Anal. 30(3), 731–750.
26.
Zurück zum Zitat G. Xie, T.P.-Y. Yu, On a linearization principle for nonlinear p-mean subdivision schemes, in Advances in Constructive Approximation, ed. by M. Neamtu, E.B. Saff (Nasboro Press, Brentwood, 2004), pp. 519–533. G. Xie, T.P.-Y. Yu, On a linearization principle for nonlinear p-mean subdivision schemes, in Advances in Constructive Approximation, ed. by M. Neamtu, E.B. Saff (Nasboro Press, Brentwood, 2004), pp. 519–533.
27.
Zurück zum Zitat G. Xie, T.P.-Y. Yu, Smoothness analysis of nonlinear subdivision schemes of homogeneous and affine invariant type, Constr. Approx. 22(2), 219–254 (2005). MathSciNetCrossRefMATH G. Xie, T.P.-Y. Yu, Smoothness analysis of nonlinear subdivision schemes of homogeneous and affine invariant type, Constr. Approx. 22(2), 219–254 (2005). MathSciNetCrossRefMATH
28.
Zurück zum Zitat G. Xie, T.P.-Y. Yu, Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach, SIAM J. Numer. Anal. 45(3), 1200–1225 (2007). MathSciNetCrossRefMATH G. Xie, T.P.-Y. Yu, Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach, SIAM J. Numer. Anal. 45(3), 1200–1225 (2007). MathSciNetCrossRefMATH
29.
Zurück zum Zitat G. Xie, T.P.-Y. Yu, Smoothness equivalence properties of general manifold-valued data subdivision schemes, Multiscale Model. Simul. 7(3), 1073–1100 (2008). MathSciNetCrossRefMATH G. Xie, T.P.-Y. Yu, Smoothness equivalence properties of general manifold-valued data subdivision schemes, Multiscale Model. Simul. 7(3), 1073–1100 (2008). MathSciNetCrossRefMATH
30.
Zurück zum Zitat G. Xie, T.P.-Y. Yu, Invariance property of the proximity condition in nonlinear subdivision, J. Approx. Theory 164(8), 1097–1110 (2012). MathSciNetCrossRefMATH G. Xie, T.P.-Y. Yu, Invariance property of the proximity condition in nonlinear subdivision, J. Approx. Theory 164(8), 1097–1110 (2012). MathSciNetCrossRefMATH
31.
Zurück zum Zitat E.N. Yazdani, T.P.-Y. Yu, On Donoho’s Log-Exp subdivision scheme: choice of retraction and time-symmetry, Multiscale Model. Simul. 9(4), 1801–1828 (2011). MathSciNetCrossRefMATH E.N. Yazdani, T.P.-Y. Yu, On Donoho’s Log-Exp subdivision scheme: choice of retraction and time-symmetry, Multiscale Model. Simul. 9(4), 1801–1828 (2011). MathSciNetCrossRefMATH
32.
Zurück zum Zitat T.P.-Y. Yu, How data dependent is a nonlinear subdivision scheme?—a case study based on convexity preserving subdivision, SIAM J. Numer. Anal. 44(3), 936–948 (2006). MathSciNetCrossRefMATH T.P.-Y. Yu, How data dependent is a nonlinear subdivision scheme?—a case study based on convexity preserving subdivision, SIAM J. Numer. Anal. 44(3), 936–948 (2006). MathSciNetCrossRefMATH
Metadaten
Titel
Single Basepoint Subdivision Schemes for Manifold-valued Data: Time-Symmetry Without Space-Symmetry
verfasst von
Tom Duchamp
Gang Xie
Thomas Yu
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 5/2013
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-013-9144-1

Weitere Artikel der Ausgabe 5/2013

Foundations of Computational Mathematics 5/2013 Zur Ausgabe

Premium Partner