Skip to main content
Erschienen in: Journal of Materials Science 4/2014

01.02.2014

Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization

verfasst von: Xiaodong Qi, Tiannan Zhou, Sha Deng, Guiying Zong, Xuelin Yao, Qiang Fu

Erschienen in: Journal of Materials Science | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The preparation of graphene oxide (GO) sheets with specified size was developed by simply controlling the time of ultrasonication to the large-size GO (LGO) sheets. The LGO sheets were synthesized by choosing large parent graphite, mild oxidation condition and a two-step centrifugation. The different-sized GO samples prepared under different ultrasonication times, are characterized by Scanning electron microscopy, X-ray photoelectron spectroscopy, Ultraviolet–visible spectroscopy, and X-ray diffraction. It is found that the size of the GO sheets, which has a Gaussian distribution, decreases from 231 to 17 μm2 as the ultrasonication time increases. Moreover, the ultrasonication not only can exfoliate and break GO sheets, but also increase the oxidation degree of GO sheets, especially when the GO sheets have a weak oxidation degree. It is reasonable to believe that the size of GO sheets is closely correlated to the C–O content, which enables the size of GO sheets to be controlled. Our work demonstrates that ultrasonication is an important method to control the size and the oxidation degree of GO sheets, to a certain extent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Zhao J, Pei S, Cheng HM et al (2010) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4:5245–5252PubMedCrossRef Zhao J, Pei S, Cheng HM et al (2010) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4:5245–5252PubMedCrossRef
3.
Zurück zum Zitat Chang H, Wang G, Zheng ZJ et al (2010) Transparent, flexible, low-temperature and solution processible graphene composite electrode. Adv Funct Mater 20:2893–2902CrossRef Chang H, Wang G, Zheng ZJ et al (2010) Transparent, flexible, low-temperature and solution processible graphene composite electrode. Adv Funct Mater 20:2893–2902CrossRef
4.
Zurück zum Zitat Chitara B, Rao CNR et al (2011) Infrared photo-detectors based on reduced graphene oxide and graphene nanoribbons. Adv Mater 23:5419–5424PubMedCrossRef Chitara B, Rao CNR et al (2011) Infrared photo-detectors based on reduced graphene oxide and graphene nanoribbons. Adv Mater 23:5419–5424PubMedCrossRef
5.
Zurück zum Zitat Agarwal S, Zhou X, Chen P et al (2010) Interfacing live cells with nanocarbon substrates. Langmuir 26:2244–2247PubMedCrossRef Agarwal S, Zhou X, Chen P et al (2010) Interfacing live cells with nanocarbon substrates. Langmuir 26:2244–2247PubMedCrossRef
6.
Zurück zum Zitat Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J Am Chem Soc 130:10876–10877PubMedCrossRefPubMedCentral Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J Am Chem Soc 130:10876–10877PubMedCrossRefPubMedCentral
7.
Zurück zum Zitat Nika DL, Ghosh S, Pokatilov EP, Balandin AA (2009) Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Appl Phys Lett 94:203103 (1–3)ADS Nika DL, Ghosh S, Pokatilov EP, Balandin AA (2009) Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Appl Phys Lett 94:203103 (1–3)ADS
8.
Zurück zum Zitat Ghosh S, Bao WZ, Balandin AA et al (2010) Dimensional crossover of thermal transport in few-layer graphene materials. Nat Mater 9:555–558PubMedCrossRefADS Ghosh S, Bao WZ, Balandin AA et al (2010) Dimensional crossover of thermal transport in few-layer graphene materials. Nat Mater 9:555–558PubMedCrossRefADS
9.
Zurück zum Zitat Cao J, Qi GQ, Yang MB et al (2012) Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. J Mater Sci 47:5097–5105CrossRefADS Cao J, Qi GQ, Yang MB et al (2012) Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. J Mater Sci 47:5097–5105CrossRefADS
10.
Zurück zum Zitat Wilson NR, Pandey PA, Sloan J et al (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3:2547–2556PubMedCrossRef Wilson NR, Pandey PA, Sloan J et al (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3:2547–2556PubMedCrossRef
11.
Zurück zum Zitat Thomas HR, Wilson NR, Rourke JP et al (2013) Identifying the fluorescence of graphene oxide. J Mater Chem C 1:338–342CrossRef Thomas HR, Wilson NR, Rourke JP et al (2013) Identifying the fluorescence of graphene oxide. J Mater Chem C 1:338–342CrossRef
12.
Zurück zum Zitat Rourke JP, Pandey PA, Wilson NR et al (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem Int Ed 50:3173–3177CrossRef Rourke JP, Pandey PA, Wilson NR et al (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem Int Ed 50:3173–3177CrossRef
13.
Zurück zum Zitat Botas C, Álvarez P, Menéndez R et al (2012) The effect of the parent graphite on the structure of graphene oxide. Carbon 50:275–282CrossRef Botas C, Álvarez P, Menéndez R et al (2012) The effect of the parent graphite on the structure of graphene oxide. Carbon 50:275–282CrossRef
14.
Zurück zum Zitat Pan SY, Aksay IA (2011) Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 5:4073–4083PubMedCrossRef Pan SY, Aksay IA (2011) Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 5:4073–4083PubMedCrossRef
15.
Zurück zum Zitat Zhang L, Liang J, Chen YS et al (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47:3365–3368CrossRef Zhang L, Liang J, Chen YS et al (2009) Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 47:3365–3368CrossRef
16.
Zurück zum Zitat Khan U, O’Neill A, Coleman JN et al (2012) Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 50:470–475CrossRef Khan U, O’Neill A, Coleman JN et al (2012) Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 50:470–475CrossRef
17.
Zurück zum Zitat Wang XL, Bai H, Shi GQ (2011) Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J Am Chem Soc 133:6338–6342PubMedCrossRef Wang XL, Bai H, Shi GQ (2011) Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J Am Chem Soc 133:6338–6342PubMedCrossRef
18.
Zurück zum Zitat Wu CK, Wang GJ, Dai JF (2013) Controlled functionalization of graphene oxide through surface modification with acetone. J Mater Sci 48:3436–3442CrossRefADS Wu CK, Wang GJ, Dai JF (2013) Controlled functionalization of graphene oxide through surface modification with acetone. J Mater Sci 48:3436–3442CrossRefADS
19.
Zurück zum Zitat Vichchulada P, Cauble MA, Lay MD et al (2010) Sonication power for length control of single-walled carbon nanotubes in aqueous suspensions used for 2-dimensional network formation. J Phys Chem C 114:12490–12495CrossRef Vichchulada P, Cauble MA, Lay MD et al (2010) Sonication power for length control of single-walled carbon nanotubes in aqueous suspensions used for 2-dimensional network formation. J Phys Chem C 114:12490–12495CrossRef
20.
Zurück zum Zitat Xie D, Su QM, Zhang J, Du GH, Xu BS (2013) Graphite oxide-assisted sonochemical preparation of α-Bi2O3 nanosheets and their high-efficiency visible light photocatalytic activity. J Mater Sci. doi:10.1007/s10853-013-7695-9 Xie D, Su QM, Zhang J, Du GH, Xu BS (2013) Graphite oxide-assisted sonochemical preparation of α-Bi2O3 nanosheets and their high-efficiency visible light photocatalytic activity. J Mater Sci. doi:10.​1007/​s10853-013-7695-9
21.
Zurück zum Zitat Veerapandian M, Subbiah R, Lee MH et al (2011) Copper-glucosamine microcubes: synthesis, characterization, and C-reactive protein detection. Langmuir 27:8934–8942PubMedCrossRef Veerapandian M, Subbiah R, Lee MH et al (2011) Copper-glucosamine microcubes: synthesis, characterization, and C-reactive protein detection. Langmuir 27:8934–8942PubMedCrossRef
22.
Zurück zum Zitat Deng C, Hu H, Ge X, Han C, Zhao D, Shao G (2011) One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres. Ultrason Sonochem 18:932–937PubMedCrossRef Deng C, Hu H, Ge X, Han C, Zhao D, Shao G (2011) One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres. Ultrason Sonochem 18:932–937PubMedCrossRef
23.
Zurück zum Zitat Pinjari DV, Pandit AB (2011) Room temperature synthesis of crystalline CeO2 nanopowder: advantage of sonochemical method over conventional method. Ultrason Sonochem 18:1118–1123PubMedCrossRef Pinjari DV, Pandit AB (2011) Room temperature synthesis of crystalline CeO2 nanopowder: advantage of sonochemical method over conventional method. Ultrason Sonochem 18:1118–1123PubMedCrossRef
24.
Zurück zum Zitat Safarifard V, Morsali A (2012) Sonochemical syntheses of a nano-sized copper(II) supramolecule as a precursor for the synthesis of copper(II) oxide nanoparticles. Ultrason Sonochem 19:823–829PubMedCrossRef Safarifard V, Morsali A (2012) Sonochemical syntheses of a nano-sized copper(II) supramolecule as a precursor for the synthesis of copper(II) oxide nanoparticles. Ultrason Sonochem 19:823–829PubMedCrossRef
25.
Zurück zum Zitat Stankovich S, Dikin DA, Ruoff RS et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Ruoff RS et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
26.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
27.
Zurück zum Zitat Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRef Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRef
28.
Zurück zum Zitat Cai WW, Piner RD, Ruoff RS et al (2008) Synthesis and solid-state NMR structural sharacterization of 13C-labeled graphite oxide. Science 321:1815–1817PubMedCrossRefADS Cai WW, Piner RD, Ruoff RS et al (2008) Synthesis and solid-state NMR structural sharacterization of 13C-labeled graphite oxide. Science 321:1815–1817PubMedCrossRefADS
29.
Zurück zum Zitat Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by Near-infrared irradiation. J Phys Chem B 115:6279–6288PubMedCrossRef Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by Near-infrared irradiation. J Phys Chem B 115:6279–6288PubMedCrossRef
30.
Zurück zum Zitat McAllister MJ, Li JL, Aksay IA et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4044–4396 McAllister MJ, Li JL, Aksay IA et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4044–4396
31.
Zurück zum Zitat Scherrer P, Nachrichten G (1918) Gesell 2:98–100 Scherrer P, Nachrichten G (1918) Gesell 2:98–100
32.
Zurück zum Zitat Dikin DA, Stankovich S, Ruoff RS et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460PubMedCrossRefADS Dikin DA, Stankovich S, Ruoff RS et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460PubMedCrossRefADS
33.
Zurück zum Zitat Lerf A, Buchsteiner A, Boehm HP et al (2006) Hydration behavior and dynamics of water molecules in graphite oxide. J Phys Chem Solids 67:1106–1110CrossRefADS Lerf A, Buchsteiner A, Boehm HP et al (2006) Hydration behavior and dynamics of water molecules in graphite oxide. J Phys Chem Solids 67:1106–1110CrossRefADS
34.
Zurück zum Zitat Szabo T, Berkesi O, Dekany I et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749CrossRef Szabo T, Berkesi O, Dekany I et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749CrossRef
35.
Zurück zum Zitat Li JL, Kudin KN, Car R et al (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101 (1–4)ADS Li JL, Kudin KN, Car R et al (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101 (1–4)ADS
36.
37.
Zurück zum Zitat Wu ZS, Ren WC, Cheng HM et al (2010) Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res 3:16–22CrossRef Wu ZS, Ren WC, Cheng HM et al (2010) Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Res 3:16–22CrossRef
Metadaten
Titel
Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization
verfasst von
Xiaodong Qi
Tiannan Zhou
Sha Deng
Guiying Zong
Xuelin Yao
Qiang Fu
Publikationsdatum
01.02.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-013-7866-8

Weitere Artikel der Ausgabe 4/2014

Journal of Materials Science 4/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.