Skip to main content

2016 | OriginalPaper | Buchkapitel

Small Antennas

verfasst von : Kyohei Fujimoto, Zhinong Ying

Erschienen in: Handbook of Antenna Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter first provides basic treatment of small antennas (SAs), beginning with overview; definition, giving four types; discussions of the limitation related with the size and Q or the bandwidth; and significance of SA, in which a short history is included. Then, principles and methods of making antennas small based on those principles are described for four types of SA. Representative examples of practical SAs are introduced for the four types individually by referencing recent technical journals. Finally, the future prospective of SA is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Babar AA et al (2012) Passive UHF RFID tag for heat sensing applications. IEEE Trans Antennas Propag 60:4056–4064CrossRef Babar AA et al (2012) Passive UHF RFID tag for heat sensing applications. IEEE Trans Antennas Propag 60:4056–4064CrossRef
Zurück zum Zitat Baena JD et al (2005) Equivalent-circuit models for split-ring resonator and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans Microwave Theory Tech 53:1451–1461CrossRef Baena JD et al (2005) Equivalent-circuit models for split-ring resonator and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans Microwave Theory Tech 53:1451–1461CrossRef
Zurück zum Zitat Baliarda CP, Romeu J, Cardama A (2000) The Koch monopole: a small fractal antenna. IEEE Trans Antennas Propag 48:1773–1781CrossRef Baliarda CP, Romeu J, Cardama A (2000) The Koch monopole: a small fractal antenna. IEEE Trans Antennas Propag 48:1773–1781CrossRef
Zurück zum Zitat Ban Y-L et al (2013) Small size coupled-fed antenna with two printed distributed inductors for seven-band WWAN/LTE mobile handset. IEEE Trans Antennas Propag 61:5780–5784CrossRef Ban Y-L et al (2013) Small size coupled-fed antenna with two printed distributed inductors for seven-band WWAN/LTE mobile handset. IEEE Trans Antennas Propag 61:5780–5784CrossRef
Zurück zum Zitat Barlevy AS, Rahmat-Samii Y (2001) Characterization of electromagnetic bandgaps composed of multiple periodic tripoles with interconnecting vias: concept, analysis, and design. IEEE Trans Antennas Propag 49:343–353CrossRef Barlevy AS, Rahmat-Samii Y (2001) Characterization of electromagnetic bandgaps composed of multiple periodic tripoles with interconnecting vias: concept, analysis, and design. IEEE Trans Antennas Propag 49:343–353CrossRef
Zurück zum Zitat Best SR (2003) A comparison of the resonant properties of small space-filling fractal antenna. IEEE Antennas Wireless Propag Lett 2:197–200 Best SR (2003) A comparison of the resonant properties of small space-filling fractal antenna. IEEE Antennas Wireless Propag Lett 2:197–200
Zurück zum Zitat Best SR (2008) Small and fractal antennas. In: Balanis CA (ed) Modern antenna handbook. Wiley, New York, p 476 Best SR (2008) Small and fractal antennas. In: Balanis CA (ed) Modern antenna handbook. Wiley, New York, p 476
Zurück zum Zitat Bilotti F, Ali A, Vegni L (2008) Design of miniaturized metamaterial patch antenna with μ-negative loading. IEEE Trans Antennas Propag 56:1640–1647CrossRef Bilotti F, Ali A, Vegni L (2008) Design of miniaturized metamaterial patch antenna with μ-negative loading. IEEE Trans Antennas Propag 56:1640–1647CrossRef
Zurück zum Zitat Caloz C, Itoh T (2003) Novel microwave devices and structures based on the transmission line approach of meta-materials. IEEE MTT Int Symp Digest 1:195–198 Caloz C, Itoh T (2003) Novel microwave devices and structures based on the transmission line approach of meta-materials. IEEE MTT Int Symp Digest 1:195–198
Zurück zum Zitat Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley/IEEE Press, HobokenCrossRef Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley/IEEE Press, HobokenCrossRef
Zurück zum Zitat Chang S-H, Liao W-J (2012) A broadband LTE/ WWAN antenna design for tablet PC. IEEE Trans Antennas Propag 60:4354–4359CrossRef Chang S-H, Liao W-J (2012) A broadband LTE/ WWAN antenna design for tablet PC. IEEE Trans Antennas Propag 60:4354–4359CrossRef
Zurück zum Zitat Chen X, Naeini, Liu Y (2003) A down-sized printed Hilbert antenna for UHF band. IEEE antennas and propagation society international symposium, pp 581–584 Chen X, Naeini, Liu Y (2003) A down-sized printed Hilbert antenna for UHF band. IEEE antennas and propagation society international symposium, pp 581–584
Zurück zum Zitat Choi S, Sarabandi K (2011) Performance assessment of bundled carbon nanotube for antenna application at terahertz frequencies and higher. IEEE Trans Antennas Propag 59:802–807CrossRef Choi S, Sarabandi K (2011) Performance assessment of bundled carbon nanotube for antenna application at terahertz frequencies and higher. IEEE Trans Antennas Propag 59:802–807CrossRef
Zurück zum Zitat Chu LJ (1947) Physical limitations of omni-directional antennas. Research Laboratory of MIT, MIT tech report no 64 Chu LJ (1947) Physical limitations of omni-directional antennas. Research Laboratory of MIT, MIT tech report no 64
Zurück zum Zitat Cortes-Medellin G (2011) Non-Planar quasi-self complementary ultra-wideband feed antenna. IEEE Trans Antennas Propag 59:1935–1944CrossRef Cortes-Medellin G (2011) Non-Planar quasi-self complementary ultra-wideband feed antenna. IEEE Trans Antennas Propag 59:1935–1944CrossRef
Zurück zum Zitat Dong Y, Toyao H, Itoh T (2012) Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Trans Antennas Propag 60:772–785CrossRef Dong Y, Toyao H, Itoh T (2012) Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Trans Antennas Propag 60:772–785CrossRef
Zurück zum Zitat Dudley SM et al (2014) Practical issues for spectrum management with cognitive radio. IEEE Proc 102:249–250CrossRef Dudley SM et al (2014) Practical issues for spectrum management with cognitive radio. IEEE Proc 102:249–250CrossRef
Zurück zum Zitat Engheta N, Ziolkowsy RW (2006) Metamaterials: physics and engineering exploration. Wiley, Hoboken, pp 88–90CrossRef Engheta N, Ziolkowsy RW (2006) Metamaterials: physics and engineering exploration. Wiley, Hoboken, pp 88–90CrossRef
Zurück zum Zitat Foster RM (1968) A reactance theorem. Bell System Tech J 3:259267 Foster RM (1968) A reactance theorem. Bell System Tech J 3:259267
Zurück zum Zitat Fujimoto K, Morishita H (2013) Modern small antennas. Cambridge University Press, Cambridge, UK, p 8CrossRef Fujimoto K, Morishita H (2013) Modern small antennas. Cambridge University Press, Cambridge, UK, p 8CrossRef
Zurück zum Zitat Fujimoto K (2005) Integrated antenna system. In: Chang K (ed) Encyclopedia of RF and microwave engineering. Wiley, New York, pp 2113–2147 Fujimoto K (2005) Integrated antenna system. In: Chang K (ed) Encyclopedia of RF and microwave engineering. Wiley, New York, pp 2113–2147
Zurück zum Zitat Fujimoto K, Morishita H (2009) Modern small antennas. Cambridge University Press, Cambridge, UK, pp 64–65 Fujimoto K, Morishita H (2009) Modern small antennas. Cambridge University Press, Cambridge, UK, pp 64–65
Zurück zum Zitat Gianvittorio JP, Rahmat-Samii Y (2000) Fractal antenna: a novel antenna miniaturization technique and applications. IEEE Antennas Propag Mag 44:20–36CrossRef Gianvittorio JP, Rahmat-Samii Y (2000) Fractal antenna: a novel antenna miniaturization technique and applications. IEEE Antennas Propag Mag 44:20–36CrossRef
Zurück zum Zitat Guha D, Gupta B, Antar YMM (2012) Hybrid monopole-DR using hemispherical/conical-shaped dielectric ring resonators: improved ultrawideband designs. IEEE Trans Antennas Propag 60:393–398CrossRef Guha D, Gupta B, Antar YMM (2012) Hybrid monopole-DR using hemispherical/conical-shaped dielectric ring resonators: improved ultrawideband designs. IEEE Trans Antennas Propag 60:393–398CrossRef
Zurück zum Zitat Hansen RC, Collin RE (2009) A new formula for Q. Antennas Propag Mag 51:38–41CrossRef Hansen RC, Collin RE (2009) A new formula for Q. Antennas Propag Mag 51:38–41CrossRef
Zurück zum Zitat Johnk CTA (1975) Engineering electromagnetic field & waves. Wiley, New York, pp 16–17 Johnk CTA (1975) Engineering electromagnetic field & waves. Wiley, New York, pp 16–17
Zurück zum Zitat Kildal P-S (1990) Artificial soft and hard surfaces in electromagnetics. IEEE Trans Antennas Propag 38:1537–1544CrossRef Kildal P-S (1990) Artificial soft and hard surfaces in electromagnetics. IEEE Trans Antennas Propag 38:1537–1544CrossRef
Zurück zum Zitat Kiourti A, Nikita K (2012) Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: design, safety considerations and link budget analysis. IEEE Trans Antennas Propag 60:3568–3575MathSciNetCrossRefMATH Kiourti A, Nikita K (2012) Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: design, safety considerations and link budget analysis. IEEE Trans Antennas Propag 60:3568–3575MathSciNetCrossRefMATH
Zurück zum Zitat Kolev S, Delacressonniere B, Gautier JL (2001) Using a negative capacitance to increase the tuning range of varactor diode. IEEE Trans Microwave Theory Tech 49:2425–2430CrossRef Kolev S, Delacressonniere B, Gautier JL (2001) Using a negative capacitance to increase the tuning range of varactor diode. IEEE Trans Microwave Theory Tech 49:2425–2430CrossRef
Zurück zum Zitat Lai A, Caloz C, Itoh T (2004) Composite right/left-handed transmission line metamaterials. IEEE Microw Mag 50:34–50CrossRef Lai A, Caloz C, Itoh T (2004) Composite right/left-handed transmission line metamaterials. IEEE Microw Mag 50:34–50CrossRef
Zurück zum Zitat Lee Y, Tee S, Hao Y, Parini CG (2007) A compact microstrip antenna with improved bandwidth using complementary split-ring resonators (CSRR) loading. IEEE International symposium antennas and propagation and URSI radio science meeting digest, pp 1869–1872 Lee Y, Tee S, Hao Y, Parini CG (2007) A compact microstrip antenna with improved bandwidth using complementary split-ring resonators (CSRR) loading. IEEE International symposium antennas and propagation and URSI radio science meeting digest, pp 1869–1872
Zurück zum Zitat Lee MWK, Leung KW, Chow YL (2014) IEEE Trans Antennas Propag 62:442–445CrossRef Lee MWK, Leung KW, Chow YL (2014) IEEE Trans Antennas Propag 62:442–445CrossRef
Zurück zum Zitat Lin C-H, Saito K, Takahashi M, Itoh K (2012) IEEE Trans Antennas Propag 60:4422–4426CrossRef Lin C-H, Saito K, Takahashi M, Itoh K (2012) IEEE Trans Antennas Propag 60:4422–4426CrossRef
Zurück zum Zitat Lin K-H, Chen S-L, Mittra R (2013) A looped-Bowtie RFID tag antenna design for metallic objects. IEEE Trans Antennas Propag 61:499–505CrossRef Lin K-H, Chen S-L, Mittra R (2013) A looped-Bowtie RFID tag antenna design for metallic objects. IEEE Trans Antennas Propag 61:499–505CrossRef
Zurück zum Zitat Linvill JG (1953) Transistor negative impedance converter. Proceedings of IRE. 41:725–729 Linvill JG (1953) Transistor negative impedance converter. Proceedings of IRE. 41:725–729
Zurück zum Zitat McLean JS (1996) A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Trans Antennas Propag 44:672–676CrossRef McLean JS (1996) A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Trans Antennas Propag 44:672–676CrossRef
Zurück zum Zitat Mizaei H, Eleftheriades GV (2013) A resonant printed monopole antenna with an embedded non-Foster matching network. IEEE Trans Antennas Propag 61:5363–5371CrossRef Mizaei H, Eleftheriades GV (2013) A resonant printed monopole antenna with an embedded non-Foster matching network. IEEE Trans Antennas Propag 61:5363–5371CrossRef
Zurück zum Zitat Mushiake Y (1996b) Self-complementary antennas. Springer, London, pp 93–97CrossRef Mushiake Y (1996b) Self-complementary antennas. Springer, London, pp 93–97CrossRef
Zurück zum Zitat Ng KB, Wong H, So KK, Chan CH, Luk KM (2012) 60 GHz plated through hole printed magneto-electric dipole antenna. IEEE Trans Antennas Propag 60:3129–3136CrossRef Ng KB, Wong H, So KK, Chan CH, Luk KM (2012) 60 GHz plated through hole printed magneto-electric dipole antenna. IEEE Trans Antennas Propag 60:3129–3136CrossRef
Zurück zum Zitat Oraizi H, Hedayati S (2012) Miniaturization of microstrip antenna by the novel application of the Giuseppe Peano fractal geometries. IEEE Trans Antennas Propag 60:3559–3567MathSciNetCrossRefMATH Oraizi H, Hedayati S (2012) Miniaturization of microstrip antenna by the novel application of the Giuseppe Peano fractal geometries. IEEE Trans Antennas Propag 60:3559–3567MathSciNetCrossRefMATH
Zurück zum Zitat Ouedraogo RO, Rothwell EJ, Dias AR, Fuchi K, Temme A (2012) Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Trans Antennas Propag 60:2175–2181CrossRef Ouedraogo RO, Rothwell EJ, Dias AR, Fuchi K, Temme A (2012) Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Trans Antennas Propag 60:2175–2181CrossRef
Zurück zum Zitat Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1998) Low frequency plasmons in thin wire structures. J Phys Condens Matter 10:4785–4809CrossRef Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1998) Low frequency plasmons in thin wire structures. J Phys Condens Matter 10:4785–4809CrossRef
Zurück zum Zitat Pendry JB, Holden AJ, Robbins SWJ (1999) Magnetism from conduction and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47:2075–2084CrossRef Pendry JB, Holden AJ, Robbins SWJ (1999) Magnetism from conduction and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47:2075–2084CrossRef
Zurück zum Zitat Perry AK (1973) Broadband antennas system realized by active circuit conjugate impedance matching. MS Thesis, Naval Postgraduate School, Monterey. Acc No. AD 769800 Perry AK (1973) Broadband antennas system realized by active circuit conjugate impedance matching. MS Thesis, Naval Postgraduate School, Monterey. Acc No. AD 769800
Zurück zum Zitat Rahmat-Samii Y, Mosallaei (2001) Electromagnetic band-gap structures; Classification, characterization, and application. Proceedings of 11th conference antennas and propagation, Manchester, pp 560–564 Rahmat-Samii Y, Mosallaei (2001) Electromagnetic band-gap structures; Classification, characterization, and application. Proceedings of 11th conference antennas and propagation, Manchester, pp 560–564
Zurück zum Zitat Rumsey VH (1957) Frequency independent antennas. IRE National Conv Rec. pt 1, 114–118 Rumsey VH (1957) Frequency independent antennas. IRE National Conv Rec. pt 1, 114–118
Zurück zum Zitat Rumsey VH (1981) Highlights of antenna history. IEEE Antennas and Propagation Society Newsletter, December p 8 Rumsey VH (1981) Highlights of antenna history. IEEE Antennas and Propagation Society Newsletter, December p 8
Zurück zum Zitat Sievenpiper D et al (1989) High impedance electro-magnetic surfaces with a forbidden frequency band. IEEE Trans Microwave Theory Tech 47:2059–2074CrossRef Sievenpiper D et al (1989) High impedance electro-magnetic surfaces with a forbidden frequency band. IEEE Trans Microwave Theory Tech 47:2059–2074CrossRef
Zurück zum Zitat Stuart HR, Pilwerbetsky A (2006) Electrically small antenna elements using negative permittivity resonator. IEEE Trans Antennas Propag 54:1644–1653CrossRef Stuart HR, Pilwerbetsky A (2006) Electrically small antenna elements using negative permittivity resonator. IEEE Trans Antennas Propag 54:1644–1653CrossRef
Zurück zum Zitat Sung Y (2012) Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch. IEEE Trans Antennas Propag 60:1712–1716CrossRef Sung Y (2012) Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch. IEEE Trans Antennas Propag 60:1712–1716CrossRef
Zurück zum Zitat Susman-Fort SE (2006) Matching network design using non-Foster impedance. Int J RF Microwave Comput Aided Eng 16:135–142CrossRef Susman-Fort SE (2006) Matching network design using non-Foster impedance. Int J RF Microwave Comput Aided Eng 16:135–142CrossRef
Zurück zum Zitat Susman-Fort SE, Rudish RM (2009) Non-Foster impedance matching for electrically-small antennas. IEEE Trans Antennas Propag 57:2230–2241CrossRef Susman-Fort SE, Rudish RM (2009) Non-Foster impedance matching for electrically-small antennas. IEEE Trans Antennas Propag 57:2230–2241CrossRef
Zurück zum Zitat Thal HL (2006) New radiation Q limits for spherical wire antennas. IEEE Trans Antennas Propag 54:2757–2763CrossRef Thal HL (2006) New radiation Q limits for spherical wire antennas. IEEE Trans Antennas Propag 54:2757–2763CrossRef
Zurück zum Zitat Thal HL (2009) Gain and Q bounds for coupled TM-TE modes. IEEE Trans Antennas Propag 57:1879–1885CrossRef Thal HL (2009) Gain and Q bounds for coupled TM-TE modes. IEEE Trans Antennas Propag 57:1879–1885CrossRef
Zurück zum Zitat Volakis JL, Chen CC, Fujimoto K (2010a) Small antennas. McGraw-Hill, New York, pp 1–2 Volakis JL, Chen CC, Fujimoto K (2010a) Small antennas. McGraw-Hill, New York, pp 1–2
Zurück zum Zitat Volakis JL, Chen CC, Fujimoto K (2010b) Small antennas. McGraw-Hill, New York, p 103 Volakis JL, Chen CC, Fujimoto K (2010b) Small antennas. McGraw-Hill, New York, p 103
Zurück zum Zitat Wang N, Liu Q, Wu C, Talbi L, Zeng Q, Xu J (2014) Wideband Fabry-Perot resonator antenna with two complementary FSS layers. IEEE Trans Antennas Propag 62:2463–2471CrossRef Wang N, Liu Q, Wu C, Talbi L, Zeng Q, Xu J (2014) Wideband Fabry-Perot resonator antenna with two complementary FSS layers. IEEE Trans Antennas Propag 62:2463–2471CrossRef
Zurück zum Zitat Werner DH, Gargiel S (2013) An overview of fractal antenna engineering research. IEEE Antennas Propag Mag 45:38–57CrossRef Werner DH, Gargiel S (2013) An overview of fractal antenna engineering research. IEEE Antennas Propag Mag 45:38–57CrossRef
Zurück zum Zitat Wheeler HA (1947) Fundamental limitation of small antennas. Proceedings of IRE. 35:1479–1484 Wheeler HA (1947) Fundamental limitation of small antennas. Proceedings of IRE. 35:1479–1484
Zurück zum Zitat Wheeler HA (1958) The spherical coil as an inductor, shield, or antenna. Proceedings of IRE. 58:1595–1602 Wheeler HA (1958) The spherical coil as an inductor, shield, or antenna. Proceedings of IRE. 58:1595–1602
Zurück zum Zitat Yogo H, Kato K (1974) Circuit realization of negative impedance converter at UHF. Electron Lett 10:155–156CrossRef Yogo H, Kato K (1974) Circuit realization of negative impedance converter at UHF. Electron Lett 10:155–156CrossRef
Zurück zum Zitat Zhu J et al (2004) Peano antennas. Antennas Wirel Propag Lett 3:71–74CrossRef Zhu J et al (2004) Peano antennas. Antennas Wirel Propag Lett 3:71–74CrossRef
Metadaten
Titel
Small Antennas
verfasst von
Kyohei Fujimoto
Zhinong Ying
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-4560-44-3_48

Neuer Inhalt