Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Small Is Beautiful: Growth and Detection of Nanocrystals

verfasst von : Jesse Coe, Alexandra Ros

Erschienen in: X-ray Free Electron Lasers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the advent of X-Ray free electron lasers (FELs), the field of serial femtosecond crystallography (SFX) was borne, allowing a stream of nanocrystals to be measured individually and diffraction data to be collected and merged to form a complete crystallographic data set. This allows submicron to micron crystals to be utilized in an experiment when they were once, at best, only an intermediate result towards larger, usable crystals. SFX and its variants have opened new possibilities in structural biology, including studies with increased temporal resolution, extending to systems with irreversible reactions, and minimizing artifacts related to local radiation damage. Perhaps the most profound aspect of this newly established field is that “molecular movies,” in which the dynamics and kinetics of biomolecules are studied as a function of time, are now an attainable commodity for a broad variety of systems, as discussed in Chaps. 11 and 12. However, one of the historic challenges in crystallography has always been crystallogenesis and this is no exception when preparing samples for serial crystallography methods. In the following chapter, we focus on some of the specific characteristics and considerations inherent in preparing a suitable sample for successful serial crystallographic approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Scopes, R. K. (2013). Protein purification: Principles and practice. Berlin, Germany: Springer. Scopes, R. K. (2013). Protein purification: Principles and practice. Berlin, Germany: Springer.
2.
Zurück zum Zitat Doublié, S. (2007). Macromolecular crystallography protocols (Vol. 1). New York: Springer. Doublié, S. (2007). Macromolecular crystallography protocols (Vol. 1). New York: Springer.
3.
Zurück zum Zitat Jancarik, J., & Kim, S.-H. (1991). Sparse matrix sampling: A screening method for crystallization of proteins. Journal of Applied Crystallography, 24(4), 409–411.CrossRef Jancarik, J., & Kim, S.-H. (1991). Sparse matrix sampling: A screening method for crystallization of proteins. Journal of Applied Crystallography, 24(4), 409–411.CrossRef
4.
Zurück zum Zitat Vekilov, P. G., Feeling-Taylor, A., Yau, S.-T., & Petsev, D. (2002). Solvent entropy contribution to the free energy of protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 58(10), 1611–1616.CrossRef Vekilov, P. G., Feeling-Taylor, A., Yau, S.-T., & Petsev, D. (2002). Solvent entropy contribution to the free energy of protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 58(10), 1611–1616.CrossRef
5.
Zurück zum Zitat Garcıa-Ruiz, J. M. (2003). Nucleation of protein crystals. Journal of Structural Biology, 142(1), 22–31.CrossRef Garcıa-Ruiz, J. M. (2003). Nucleation of protein crystals. Journal of Structural Biology, 142(1), 22–31.CrossRef
6.
Zurück zum Zitat Perutz, M. F., Rossmann, M. G., Cullis, A. F., Muirhead, H., Will, G., & North, A. (1960). Structure of hæmoglobin: A three-dimensional Fourier synthesis at 5.5-Å. Resolution, obtained by X-ray analysis. Nature, 185(4711), 416–422.CrossRef Perutz, M. F., Rossmann, M. G., Cullis, A. F., Muirhead, H., Will, G., & North, A. (1960). Structure of hæmoglobin: A three-dimensional Fourier synthesis at 5.5-Å. Resolution, obtained by X-ray analysis. Nature, 185(4711), 416–422.CrossRef
7.
Zurück zum Zitat Giegé, R. (2013). A historical perspective on protein crystallization from 1840 to the present day. The FEBS Journal, 280(24), 6456–6497.CrossRef Giegé, R. (2013). A historical perspective on protein crystallization from 1840 to the present day. The FEBS Journal, 280(24), 6456–6497.CrossRef
8.
Zurück zum Zitat McPherson, A. (2017). Protein crystallization. In Protein Crystallography: Methods and Protocols (pp. 17–50). New York: Springer.CrossRef McPherson, A. (2017). Protein crystallization. In Protein Crystallography: Methods and Protocols (pp. 17–50). New York: Springer.CrossRef
9.
Zurück zum Zitat Rupp, B. (2009). Biomolecular crystallography: Principles, practice, and application to structural biology. Abingdon, UK: Garland Science. Rupp, B. (2009). Biomolecular crystallography: Principles, practice, and application to structural biology. Abingdon, UK: Garland Science.
10.
Zurück zum Zitat Cohen, A. E., Soltis, S. M., Gonzalez, A., Aguila, L., Alonso-Mori, R., Barnes, C. O., Baxter, E. L., Brehmer, W., Brewster, A. S., Brunger, A. T., Calero, G., Chang, J. F., Chollet, M., Ehrensberger, P., Eriksson, T. L., Feng, Y., Hattne, J., Hedman, B., Hollenbeck, M., Holton, J. M., Keable, S., Kobilka, B. K., Kovaleva, E. G., Kruse, A. C., Lemke, H. T., Lin, G., Lyubimov, A. Y., Manglik, A., Mathews, I. I., McPhillips, S. E., Nelson, S., Peters, J. W., Sauter, N. K., Smith, C. A., Song, J., Stevenson, H. P., Tsai, Y., Uervirojnangkoorn, M., Vinetsky, V., Wakatsuki, S., Weis, W. I., Zadvornyy, O. A., Zeldin, O. B., Zhu, D., & Hodgson, K. O. (2014). Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proceedings of the National Academy of Sciences of the United States of America, 111(48), 17122–17127.CrossRef Cohen, A. E., Soltis, S. M., Gonzalez, A., Aguila, L., Alonso-Mori, R., Barnes, C. O., Baxter, E. L., Brehmer, W., Brewster, A. S., Brunger, A. T., Calero, G., Chang, J. F., Chollet, M., Ehrensberger, P., Eriksson, T. L., Feng, Y., Hattne, J., Hedman, B., Hollenbeck, M., Holton, J. M., Keable, S., Kobilka, B. K., Kovaleva, E. G., Kruse, A. C., Lemke, H. T., Lin, G., Lyubimov, A. Y., Manglik, A., Mathews, I. I., McPhillips, S. E., Nelson, S., Peters, J. W., Sauter, N. K., Smith, C. A., Song, J., Stevenson, H. P., Tsai, Y., Uervirojnangkoorn, M., Vinetsky, V., Wakatsuki, S., Weis, W. I., Zadvornyy, O. A., Zeldin, O. B., Zhu, D., & Hodgson, K. O. (2014). Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proceedings of the National Academy of Sciences of the United States of America, 111(48), 17122–17127.CrossRef
11.
Zurück zum Zitat Hirata, K., Shinzawa-Itoh, K., Yano, N., Takemura, S., Kato, K., Hatanaka, M., Muramoto, K., Kawahara, T., Tsukihara, T., & Yamashita, E. (2014). Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nature Methods, 11(7), 734–736.CrossRef Hirata, K., Shinzawa-Itoh, K., Yano, N., Takemura, S., Kato, K., Hatanaka, M., Muramoto, K., Kawahara, T., Tsukihara, T., & Yamashita, E. (2014). Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nature Methods, 11(7), 734–736.CrossRef
12.
Zurück zum Zitat Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., Andreasson, J., Arnlund, D., Bajt, S., Barends, T. R., Barthelmess, M., Bogan, M. J., Bostedt, C., Bottin, H., Bozek, J. D., Caleman, C., Coppola, N., Davidsson, J., DePonte, D. P., Elser, V., Epp, S. W., Erk, B., Fleckenstein, H., Foucar, L., Frank, M., Fromme, R., Graafsma, H., Grotjohann, I., Gumprecht, L., Hajdu, J., Hampton, C. Y., Hartmann, A., Hartmann, R., Hau-Riege, S., Hauser, G., Huaser, H., Hirsemann, P., Holl, J., Holton, M., Hömke, A., Johansson, L., Kimmel, N., Kassemeyer, S., Krasniqi, F., Kühnel, K.-U., Liang, M., Lomb, L., Malmerberg, E., Marchesini, S., Martin, A. V., Maia, F. R., Messerschmidt, M., Nass, K., Schlichting, I., Schmidt, C., Schmidt, K. E., Schulz, J., Seibert, M. M., Shoeman, R. L., Sierra, R., Soltau, H., Starodub, D., Stellato, F., Stern, S., Strüder, L., Timneanu, N., Ullrich, J., Wang, X., Williams, G. J., Weidenspointner, G., Weierstall, U., Wunderer, C., Barty, A., Spence, J. C. H., & Chapman, H. N. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20(3), 2706–2716. Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., Andreasson, J., Arnlund, D., Bajt, S., Barends, T. R., Barthelmess, M., Bogan, M. J., Bostedt, C., Bottin, H., Bozek, J. D., Caleman, C., Coppola, N., Davidsson, J., DePonte, D. P., Elser, V., Epp, S. W., Erk, B., Fleckenstein, H., Foucar, L., Frank, M., Fromme, R., Graafsma, H., Grotjohann, I., Gumprecht, L., Hajdu, J., Hampton, C. Y., Hartmann, A., Hartmann, R., Hau-Riege, S., Hauser, G., Huaser, H., Hirsemann, P., Holl, J., Holton, M., Hömke, A., Johansson, L., Kimmel, N., Kassemeyer, S., Krasniqi, F., Kühnel, K.-U., Liang, M., Lomb, L., Malmerberg, E., Marchesini, S., Martin, A. V., Maia, F. R., Messerschmidt, M., Nass, K., Schlichting, I., Schmidt, C., Schmidt, K. E., Schulz, J., Seibert, M. M., Shoeman, R. L., Sierra, R., Soltau, H., Starodub, D., Stellato, F., Stern, S., Strüder, L., Timneanu, N., Ullrich, J., Wang, X., Williams, G. J., Weidenspointner, G., Weierstall, U., Wunderer, C., Barty, A., Spence, J. C. H., & Chapman, H. N. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20(3), 2706–2716.
13.
Zurück zum Zitat Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., Hunter, M. S., Shoeman, R. L., White, T. A., Wang, D., James, D., Yang, J.-H., Cobb, D. E., Reeder, B., Sierra, R. G., Liu, H., Barty, A., Aquila, A. L., Deponte, D., Kirian, R. A., Bari, S., Bergkamp, J. J., Beyerlein, K. R., Bogan, M. J., Caleman, C., Chao, T.-C., Conrad, C. E., Davis, K. M., fleckenstein, H., Galli, L., Hau-Riege, S. P., Kassemeyer, S., Laksmono, H., Liang, M., Lomb, L., Marchesini, S., Martin, A. V., Messerschmidt, M., Milathianaki, D., Nass, K., Ros, A., Roy-Chowdhury, S., Schmidt, K., Seibert, M., Steinbrener, J., Stellato, F., Yan, L., Yoon, C., Moore, T. A., Moore, A. L., Pushkar, Y., Williams, G. J., Boutet, S., Doak, R. B., Weierstall,~U., Frank, M., Chapman, H. N., Spence, J. C. H., & Fromme, P. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265. Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., Hunter, M. S., Shoeman, R. L., White, T. A., Wang, D., James, D., Yang, J.-H., Cobb, D. E., Reeder, B., Sierra, R. G., Liu, H., Barty, A., Aquila, A. L., Deponte, D., Kirian, R. A., Bari, S., Bergkamp, J. J., Beyerlein, K. R., Bogan, M. J., Caleman, C., Chao, T.-C., Conrad, C. E., Davis, K. M., fleckenstein, H., Galli, L., Hau-Riege, S. P., Kassemeyer, S., Laksmono, H., Liang, M., Lomb, L., Marchesini, S., Martin, A. V., Messerschmidt, M., Milathianaki, D., Nass, K., Ros, A., Roy-Chowdhury, S., Schmidt, K., Seibert, M., Steinbrener, J., Stellato, F., Yan, L., Yoon, C., Moore, T. A., Moore, A. L., Pushkar, Y., Williams, G. J., Boutet, S., Doak, R. B., Weierstall,~U., Frank, M., Chapman, H. N., Spence, J. C. H., & Fromme, P. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.
14.
Zurück zum Zitat Pande, K., Hutchinson, C. D. M., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., Basu, S., Boutet, S., Deponte, D., Liang, M., White, T., Zatsepin, N., Yefanov, O., Morozov, D., Oberthuer, D., Gati, C., Subramanian, G., James, D., Zhao, Y., Koralek, J., Brayshaw, J., Kupitz, C., Conrad, C., Roy-Chowdhury, S., Coe, J., Metz, M., Paulraj Lourdu, X., Grant, T., Koglin, J., Ketawala, G., Fromme, R., Srajer, V., Henning, R., Spence, J., Ourmazd, A., Schwander, P., Weierstall, U., Frank, M., Fromme, P., Barty, A., Chapman, H., Moffat, K., Van Thor, J. J., & Schmidt, M. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352(6286), 725–729.CrossRef Pande, K., Hutchinson, C. D. M., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., Basu, S., Boutet, S., Deponte, D., Liang, M., White, T., Zatsepin, N., Yefanov, O., Morozov, D., Oberthuer, D., Gati, C., Subramanian, G., James, D., Zhao, Y., Koralek, J., Brayshaw, J., Kupitz, C., Conrad, C., Roy-Chowdhury, S., Coe, J., Metz, M., Paulraj Lourdu, X., Grant, T., Koglin, J., Ketawala, G., Fromme, R., Srajer, V., Henning, R., Spence, J., Ourmazd, A., Schwander, P., Weierstall, U., Frank, M., Fromme, P., Barty, A., Chapman, H., Moffat, K., Van Thor, J. J., & Schmidt, M. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352(6286), 725–729.CrossRef
15.
Zurück zum Zitat Tenboer, J., Basu, S., Zatsepin, N., Pande, K., Milathianaki, D., Frank, M., Hunter, M., Boutet, S., Williams, G. J., Koglin, J. E., Oberthuer, D., Heymann, M., Kupitz, C., Conrad, C., Coe, J., Roy-Chowdhury, S., Weierstall, U., James, D., Wang, D., Grant, T., Barty, A., Yefanov, O., Scales, J., Gati, C., Seuring, C., Srajer, V., Henning, R., Schwander, P., Fromme, R., Ourmazd, A., Moffat, K., Van Thor, J. J., Spence, J. C. H., Fromme, P., Chapman, H. N., & Schmidt, M. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346(6214), 1242–1246.CrossRef Tenboer, J., Basu, S., Zatsepin, N., Pande, K., Milathianaki, D., Frank, M., Hunter, M., Boutet, S., Williams, G. J., Koglin, J. E., Oberthuer, D., Heymann, M., Kupitz, C., Conrad, C., Coe, J., Roy-Chowdhury, S., Weierstall, U., James, D., Wang, D., Grant, T., Barty, A., Yefanov, O., Scales, J., Gati, C., Seuring, C., Srajer, V., Henning, R., Schwander, P., Fromme, R., Ourmazd, A., Moffat, K., Van Thor, J. J., Spence, J. C. H., Fromme, P., Chapman, H. N., & Schmidt, M. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346(6214), 1242–1246.CrossRef
16.
Zurück zum Zitat Kupitz, C., Grotjohann, I., Conrad, C. E., Roy-Chowdhury, S., Fromme, R., & Fromme, P. (2014). Microcrystallization techniques for serial femtosecond crystallography using photosystem II from thermosynechococcus elongatus as a model system. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1647), 20130316.CrossRef Kupitz, C., Grotjohann, I., Conrad, C. E., Roy-Chowdhury, S., Fromme, R., & Fromme, P. (2014). Microcrystallization techniques for serial femtosecond crystallography using photosystem II from thermosynechococcus elongatus as a model system. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1647), 20130316.CrossRef
17.
Zurück zum Zitat Salemme, F. (1972). A free interface diffusion technique for the crystallization of proteins for X-ray crystallography. Archives of Biochemistry and Biophysics, 151(2), 533–539.CrossRef Salemme, F. (1972). A free interface diffusion technique for the crystallization of proteins for X-ray crystallography. Archives of Biochemistry and Biophysics, 151(2), 533–539.CrossRef
18.
Zurück zum Zitat Abdallah, B. G., Roy-Chowdhury, S., Fromme, R., Fromme, P., & Ros, A. (2016). Protein crystallization in an actuated microfluidic nanowell device. Crystal Growth & Design, 16, 2074–2082.CrossRef Abdallah, B. G., Roy-Chowdhury, S., Fromme, R., Fromme, P., & Ros, A. (2016). Protein crystallization in an actuated microfluidic nanowell device. Crystal Growth & Design, 16, 2074–2082.CrossRef
19.
Zurück zum Zitat Kupitz, C., Olmos, J. L., Jr., Holl, M., Tremblay, L., Pande, K., Pandey, S., Oberthür, D., Hunter, M., Liang, M., Aquila, A., Tenboer, J., Calvey, G., Katz, A., Chen, Y., Wiedorn, M. O., Knoska, J., Meents, A., Mariani, V., Norwood, T., Poudyal, I., Grant, T., Miller, M. D., Xu, W., Tolstikova, A., Morgan, A., Metz, M., Martin-Garcia, J. M., Zook, J. D., Roy-Chowdhury, S., Coe, J., Nagaratnam, N., Meza, D., Fromme, R., Basu, S., Frank, M., White, T., Barty, A., Bajt, S., Yefanov, O., Chapman, H. N., Zatsepin, N., Nelson, G., Weierstall, U., Spence, J., Schwander, P., Pollack, L., Fromme, P., Ourmazd, A., Phillips, G. N., & Schmidt, M. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003. Kupitz, C., Olmos, J. L., Jr., Holl, M., Tremblay, L., Pande, K., Pandey, S., Oberthür, D., Hunter, M., Liang, M., Aquila, A., Tenboer, J., Calvey, G., Katz, A., Chen, Y., Wiedorn, M. O., Knoska, J., Meents, A., Mariani, V., Norwood, T., Poudyal, I., Grant, T., Miller, M. D., Xu, W., Tolstikova, A., Morgan, A., Metz, M., Martin-Garcia, J. M., Zook, J. D., Roy-Chowdhury, S., Coe, J., Nagaratnam, N., Meza, D., Fromme, R., Basu, S., Frank, M., White, T., Barty, A., Bajt, S., Yefanov, O., Chapman, H. N., Zatsepin, N., Nelson, G., Weierstall, U., Spence, J., Schwander, P., Pollack, L., Fromme, P., Ourmazd, A., Phillips, G. N., & Schmidt, M. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.
20.
Zurück zum Zitat Redecke, L., Nass, K., DePonte, D. P., White, T. A., Rehders, D., Barty, A., Stellato, F., Liang, M., Barends, T. R., Boutet, S., Williams, G. J., Messerschmidt, M., Seibert, M. M., Aquila, A., Arnlund, D., Bajt, S., Barth, T., Bogan, M. J., Caleman, C., Chao, T. C., Doak, R. B., Fleckenstein, H., Frank, M., Fromme, R., Galli, L., Grotjohann, I., Hunter, M. S., Johansson, L. C., Kassemeyer, S., Katona, G., Kirian, R. A., Koopmann, R., Kupitz, C., Lomb, L., Martin, A. V., Mogk, S., Neutze, R., Shoeman, R. L., Steinbrener, J., Timneanu, N., Wang, D., Weierstall, U., Zatsepin, N. A., Spence, J. C., Fromme, P., Schlichting, I., Duszenko, M., Betzel, C., & Chapman, H. N. (2013). Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science, 339(6116), 227–230.CrossRef Redecke, L., Nass, K., DePonte, D. P., White, T. A., Rehders, D., Barty, A., Stellato, F., Liang, M., Barends, T. R., Boutet, S., Williams, G. J., Messerschmidt, M., Seibert, M. M., Aquila, A., Arnlund, D., Bajt, S., Barth, T., Bogan, M. J., Caleman, C., Chao, T. C., Doak, R. B., Fleckenstein, H., Frank, M., Fromme, R., Galli, L., Grotjohann, I., Hunter, M. S., Johansson, L. C., Kassemeyer, S., Katona, G., Kirian, R. A., Koopmann, R., Kupitz, C., Lomb, L., Martin, A. V., Mogk, S., Neutze, R., Shoeman, R. L., Steinbrener, J., Timneanu, N., Wang, D., Weierstall, U., Zatsepin, N. A., Spence, J. C., Fromme, P., Schlichting, I., Duszenko, M., Betzel, C., & Chapman, H. N. (2013). Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science, 339(6116), 227–230.CrossRef
21.
Zurück zum Zitat Sawaya, M. R., Cascio, D., Gingery, M., Rodriguez, J., Goldschmidt, L., Colletier, J. P., Messerschmidt, M. M., Boutet, S., Koglin, J. E., Williams, G. J., Brewster, A. S., Nass, K., Hattne, J., Botha, S., Doak, R. B., Shoeman, R. L., DePonte, D. P., Park, H. W., Federici, B. A., Sauter, N. K., Schlichting, I., & Eisenberg, D. S. (2014). Protein crystal structure obtained at 2.9 a resolution from injecting bacterial cells into an X-ray free-electron laser beam. Proceedings of the National Academy of Sciences of the United States of America, 111(35), 12769–12774.CrossRef Sawaya, M. R., Cascio, D., Gingery, M., Rodriguez, J., Goldschmidt, L., Colletier, J. P., Messerschmidt, M. M., Boutet, S., Koglin, J. E., Williams, G. J., Brewster, A. S., Nass, K., Hattne, J., Botha, S., Doak, R. B., Shoeman, R. L., DePonte, D. P., Park, H. W., Federici, B. A., Sauter, N. K., Schlichting, I., & Eisenberg, D. S. (2014). Protein crystal structure obtained at 2.9 a resolution from injecting bacterial cells into an X-ray free-electron laser beam. Proceedings of the National Academy of Sciences of the United States of America, 111(35), 12769–12774.CrossRef
22.
Zurück zum Zitat Ostermeier, C., & Michel, H. (1997). Crystallization of membrane proteins. Current Opinion in Structural Biology, 7(5), 697–701.CrossRef Ostermeier, C., & Michel, H. (1997). Crystallization of membrane proteins. Current Opinion in Structural Biology, 7(5), 697–701.CrossRef
23.
Zurück zum Zitat Fromme, R., Ishchenko, A., Metz, M., Chowdhury, S. R., Basu, S., Boutet, S., Fromme, P., White, T. A., Barty, A., Spence, J. C., Weierstall, U., Liu, W., & Cherezov, V. (2015). Serial femtosecond crystallography of soluble proteins in lipidic cubic phase. IUCrJ, 2(5), 545–551.CrossRef Fromme, R., Ishchenko, A., Metz, M., Chowdhury, S. R., Basu, S., Boutet, S., Fromme, P., White, T. A., Barty, A., Spence, J. C., Weierstall, U., Liu, W., & Cherezov, V. (2015). Serial femtosecond crystallography of soluble proteins in lipidic cubic phase. IUCrJ, 2(5), 545–551.CrossRef
24.
Zurück zum Zitat Martin-Garcia, J. M., Conrad, C. E., Nelson, G., Stander, N., Zatsepin, N. A., Zook, J., Zhu, L., Geiger, J., Chun, E., Kissick, D., Hilgart, M. C., Ogata, C., Ishchenko, A., Nagaratnam, N., Roy-Chowdhury, S., Coe, J., Subramanian, G., Schaffer, A., James, D., Ketawala, G., Venugopalan, N., Xu, S., Corcoran, S., Ferguson, D., Weierstall, U., Spence, J. C. H., Cherezov, V., Fromme, P., Fischetti, R. F., & Liu, W. (2017). Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ, 4(4), 439–454. Martin-Garcia, J. M., Conrad, C. E., Nelson, G., Stander, N., Zatsepin, N. A., Zook, J., Zhu, L., Geiger, J., Chun, E., Kissick, D., Hilgart, M. C., Ogata, C., Ishchenko, A., Nagaratnam, N., Roy-Chowdhury, S., Coe, J., Subramanian, G., Schaffer, A., James, D., Ketawala, G., Venugopalan, N., Xu, S., Corcoran, S., Ferguson, D., Weierstall, U., Spence, J. C. H., Cherezov, V., Fromme, P., Fischetti, R. F., & Liu, W. (2017). Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ, 4(4), 439–454.
25.
Zurück zum Zitat Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., Spence, J. C., Doak, R. B., Nelson, G., & Fromme, P. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.CrossRef Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., Spence, J. C., Doak, R. B., Nelson, G., & Fromme, P. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.CrossRef
26.
Zurück zum Zitat Ibrahim, M., Chatterjee, R., Hellmich, J., Tran, R., Bommer, M., Yachandra, V. K., Yano, J., Kern, J., & Zouni, A. (2015). Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures. Structural Dynamics, 2(4), 041705.CrossRef Ibrahim, M., Chatterjee, R., Hellmich, J., Tran, R., Bommer, M., Yachandra, V. K., Yano, J., Kern, J., & Zouni, A. (2015). Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures. Structural Dynamics, 2(4), 041705.CrossRef
27.
Zurück zum Zitat Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., Spence, J. C., Hunter, M., Fromme, P., White, T., Chapman, H. N., & Holton, J. (2010). Femtosecond protein nanocrystallography—Data analysis methods. Optics Express, 18(6), 5713–5723.CrossRef Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., Spence, J. C., Hunter, M., Fromme, P., White, T., Chapman, H. N., & Holton, J. (2010). Femtosecond protein nanocrystallography—Data analysis methods. Optics Express, 18(6), 5713–5723.CrossRef
28.
Zurück zum Zitat Uervirojnangkoorn, M., Zeldin, O. B., Lyubimov, A. Y., Hattne, J., Brewster, A. S., Sauter, N. K., Brunger, A. T., & Weis, W. I. (2015). Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. eLife, 4, e05421.CrossRef Uervirojnangkoorn, M., Zeldin, O. B., Lyubimov, A. Y., Hattne, J., Brewster, A. S., Sauter, N. K., Brunger, A. T., & Weis, W. I. (2015). Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. eLife, 4, e05421.CrossRef
29.
Zurück zum Zitat Ginn, H. M., Brewster, A. S., Hattne, J., Evans, G., Wagner, A., Grimes, J. M., Sauter, N. K., Sutton, G., & Stuart, D. (2015). A revised partiality model and post-refinement algorithm for X-ray free-electron laser data. Acta Crystallographica Section D: Biological Crystallography, 71(6), 1400–1410.CrossRef Ginn, H. M., Brewster, A. S., Hattne, J., Evans, G., Wagner, A., Grimes, J. M., Sauter, N. K., Sutton, G., & Stuart, D. (2015). A revised partiality model and post-refinement algorithm for X-ray free-electron laser data. Acta Crystallographica Section D: Biological Crystallography, 71(6), 1400–1410.CrossRef
30.
Zurück zum Zitat Ginn, H. M., Messerschmidt, M., Ji, X., Zhang, H., Axford, D., Gildea, R. J., Winter, G., Brewster, A. S., Hattne, J., Wagner, A., Grimes, J. M., Evans, G., Sauter, N. K., Sutton, G., & Stuart, D. I. (2015). Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nature Communications, 6. Ginn, H. M., Messerschmidt, M., Ji, X., Zhang, H., Axford, D., Gildea, R. J., Winter, G., Brewster, A. S., Hattne, J., Wagner, A., Grimes, J. M., Evans, G., Sauter, N. K., Sutton, G., & Stuart, D. I. (2015). Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nature Communications, 6.
31.
Zurück zum Zitat Spence, J. C. H., Weierstall, U., & Chapman, H. N. (2012). X-ray lasers for structural and dynamic biology. Reports on Progress in Physics, 75(10), 102601.CrossRef Spence, J. C. H., Weierstall, U., & Chapman, H. N. (2012). X-ray lasers for structural and dynamic biology. Reports on Progress in Physics, 75(10), 102601.CrossRef
32.
Zurück zum Zitat Brehms, W., & Diederichs, K. (2014). Breaking the indexing ambiguity in serial crystallography. Acta Crystallographica Section D, D70, 101–109.CrossRef Brehms, W., & Diederichs, K. (2014). Breaking the indexing ambiguity in serial crystallography. Acta Crystallographica Section D, D70, 101–109.CrossRef
33.
Zurück zum Zitat Abdallah, B. G., Zatsepin, N. A., Roy-Chowdhury, S., Coe, J., Conrad, C. E., Dörner, K., Sierra, R. G., Stevenson, H. P., Grant, T. D., Nelson, G., James, D. R., Calero, G., Wachter, R. M., Spence, J. C. H., Weierstall, U., Fromme, P., & Ros, A. (2015). Microfluidic sorting of protein nanocrystals by size for XFEL diffraction. Structural Dynamics, 2, 041719.CrossRef Abdallah, B. G., Zatsepin, N. A., Roy-Chowdhury, S., Coe, J., Conrad, C. E., Dörner, K., Sierra, R. G., Stevenson, H. P., Grant, T. D., Nelson, G., James, D. R., Calero, G., Wachter, R. M., Spence, J. C. H., Weierstall, U., Fromme, P., & Ros, A. (2015). Microfluidic sorting of protein nanocrystals by size for XFEL diffraction. Structural Dynamics, 2, 041719.CrossRef
34.
Zurück zum Zitat Abdallah, B. G., Chao, T. C., Kupitz, C., Fromme, P., & Ros, A. (2013). Dielectrophoretic sorting of membrane protein nanocrystals. American Chemical Society Nano, 7(10), 9129–9137.PubMed Abdallah, B. G., Chao, T. C., Kupitz, C., Fromme, P., & Ros, A. (2013). Dielectrophoretic sorting of membrane protein nanocrystals. American Chemical Society Nano, 7(10), 9129–9137.PubMed
35.
Zurück zum Zitat Haupert, L. M., & Simpson, G. J. (2011). Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC). Methods, 55(4), 379–386.CrossRef Haupert, L. M., & Simpson, G. J. (2011). Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC). Methods, 55(4), 379–386.CrossRef
36.
Zurück zum Zitat Kissick, D. J., Wanapun, D., & Simpson, G. J. (2011). Second-order nonlinear optical imaging of chiral crystals. Annual Review of Analytical Chemistry, 4, 419.CrossRef Kissick, D. J., Wanapun, D., & Simpson, G. J. (2011). Second-order nonlinear optical imaging of chiral crystals. Annual Review of Analytical Chemistry, 4, 419.CrossRef
37.
Zurück zum Zitat Madden, J. T., DeWalt, E. L., & Simpson, G. J. (2011). Two-photon excited UV fluorescence for protein crystal detection. Acta Crystallographica Section D: Biological Crystallography, 67(10), 839–846.CrossRef Madden, J. T., DeWalt, E. L., & Simpson, G. J. (2011). Two-photon excited UV fluorescence for protein crystal detection. Acta Crystallographica Section D: Biological Crystallography, 67(10), 839–846.CrossRef
38.
Zurück zum Zitat Pecora, R. (2000). Dynamic light scattering measurement of nanometer particles in liquids. Journal of Nanoparticle Research, 2(2), 123–131. CrossRef Pecora, R. (2000). Dynamic light scattering measurement of nanometer particles in liquids. Journal of Nanoparticle Research, 2(2), 123–131. CrossRef
39.
Zurück zum Zitat Schubert, R., Meyer, A., Dierks, K., Kapis, S., Reimer, R., Einspahr, H., Perbandt, M., & Betzel, C. (2015). Reliably distinguishing protein nanocrystals from amorphous precipitate by means of depolarized dynamic light scattering. Journal of Applied Crystallography, 48(5), 1476–1484.CrossRef Schubert, R., Meyer, A., Dierks, K., Kapis, S., Reimer, R., Einspahr, H., Perbandt, M., & Betzel, C. (2015). Reliably distinguishing protein nanocrystals from amorphous precipitate by means of depolarized dynamic light scattering. Journal of Applied Crystallography, 48(5), 1476–1484.CrossRef
40.
Zurück zum Zitat Schmitz, K. S. (1990). An introduction to dynamic light scattering of macromolecules. Kansas City, MO: University of Missouri. Schmitz, K. S. (1990). An introduction to dynamic light scattering of macromolecules. Kansas City, MO: University of Missouri.
41.
Zurück zum Zitat Rasband, W. (1997). ImageJ. Bethesda, MD: US National Institutes of Health. Rasband, W. (1997). ImageJ. Bethesda, MD: US National Institutes of Health.
42.
Zurück zum Zitat Bai, K., Barnett, G. V., Kar, S. R., & Das, T. K. (2017). Interference from proteins and surfactants on particle size distributions measured by nanoparticle tracking analysis (NTA). Pharmaceutical Research, 34(4), 800–808.CrossRef Bai, K., Barnett, G. V., Kar, S. R., & Das, T. K. (2017). Interference from proteins and surfactants on particle size distributions measured by nanoparticle tracking analysis (NTA). Pharmaceutical Research, 34(4), 800–808.CrossRef
43.
Zurück zum Zitat Regtmeier, J., Eichhorn, R., Duong, T. T., Anselmetti, D., & Ros, A. (2007). Dielectrophoretic manipulation of DNA: Separation and polarizability. Analytical Chemistry, 79, 3925–3932.CrossRef Regtmeier, J., Eichhorn, R., Duong, T. T., Anselmetti, D., & Ros, A. (2007). Dielectrophoretic manipulation of DNA: Separation and polarizability. Analytical Chemistry, 79, 3925–3932.CrossRef
44.
Zurück zum Zitat Stevenson, H. P., Lin, G. W., Barnes, C. O., Sutkeviciute, I., Krzysiak, T., Weiss, S. C., Reynolds, S., Wu, Y., Nagarajan, V., Makhov, A. M., Lawrence, R., Lamm, E., Clark, L., Gardella, T. J., Hogue, B. G., Ogata, C. M., Ahn, J., Gronenborn, A. M., Conway, J. F., Vilardaga, J. P., Cohen, A. E., & Calero, G. (2016). Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallographica Section D-Structural Biology, 72, 603–615.CrossRef Stevenson, H. P., Lin, G. W., Barnes, C. O., Sutkeviciute, I., Krzysiak, T., Weiss, S. C., Reynolds, S., Wu, Y., Nagarajan, V., Makhov, A. M., Lawrence, R., Lamm, E., Clark, L., Gardella, T. J., Hogue, B. G., Ogata, C. M., Ahn, J., Gronenborn, A. M., Conway, J. F., Vilardaga, J. P., Cohen, A. E., & Calero, G. (2016). Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallographica Section D-Structural Biology, 72, 603–615.CrossRef
45.
Zurück zum Zitat Stevenson, H. P., Makhov, A. M., Calero, M., Edwards, A. L., Zeldin, O. B., Mathews, I. I., Lin, G., Barnes, C. O., Santamaria, H., Ross, T. M., Soltis, S. M., Khosla, C., Nagarajan, V., Conway, J. F., Cohen, A. E., & Calero, G. (2014). Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8470–8475.CrossRef Stevenson, H. P., Makhov, A. M., Calero, M., Edwards, A. L., Zeldin, O. B., Mathews, I. I., Lin, G., Barnes, C. O., Santamaria, H., Ross, T. M., Soltis, S. M., Khosla, C., Nagarajan, V., Conway, J. F., Cohen, A. E., & Calero, G. (2014). Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8470–8475.CrossRef
Metadaten
Titel
Small Is Beautiful: Growth and Detection of Nanocrystals
verfasst von
Jesse Coe
Alexandra Ros
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00551-1_3

Neuer Inhalt